SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Daniel Silva Jr(danieljunior@id.uff.br)
2 Aline Paes(alinepaes@ic.uff.br)
3 Esther Pacitti(esther.pacitti@lirmm.fr)
4 Daniel de Oliveira(danielcmo@ic.uff.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Black, D. (1976). Partial justification of the borda count. Public Choice, 28(1):1–15.
2 Cheng, Z., Zhou, Z., and Wang, X. (2015). Scientific workflow clustering and recommendation. In 11th International Conf. on Semantics, Knowledge and Grids (SKG), pages 272–274.
3 Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1):21–27.
4 Das, J., Mukherjee, P., Majumder, S., and Gupta, P. (2014). Clustering-based recommender system using principles of voting theory. In IC3I, pages 230–235. IEEE.
5 Fishburn, P. C. (1974). Simple voting systems and majority rule. Systems Research and Behavioral Science, 19(3):166–176.
6 Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for Computational Tasks: A Survey. Computing in Science & Engineering, pages 20–30.
7 Fürnkranz, J. and Hüllermeier, E. (2011). Preference learning. In Encyclopedia of Machine Learning, pages 789–795. Springer.
8 Halioui, A., Valtchev, P., and Diallo, A. B. (2016). Towards an ontology-based recommender system for relevant bioinformatics workflows. bioRxiv, page 082776.
9 Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5–53.
10 Hüllermeier, E., Fürnkranz, J., Cheng, W., and Brinker, K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence, 172(16-17):1897–1916.
11 Mukherjee, R., Sajja, N., and Sen, S. (2003). A movie recommendation system–an application of voting theory in user modeling. User Modeling and User-Adapted Interaction, 13(1-2):5–33.
12 Ocaña, K. A., de Oliveira, D., Ogasawara, E., Dávila, A. M., Lima, A. A., and Mattoso, M. (2011). Sciphy: a cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In BSB11, pages 66–70. Springer.
13 Pessiot, J., Truong, T., Usunier, N., Amini, M., and Gallinari, P. (2007). Learning to rank for collaborative filtering. In ICEIS 2007 - Proc. of the 9th International Conf. on Enterprise Information Systems, pages 145–151.
14 Refaeilzadeh, P., Tang, L., and Liu, H. (2016). Cross-validation. Encyclopedia of database systems, pages 1–7.
15 Soomro, K., Munir, K., and McClatchey, R. (2015). Incorporating semantics in pattern-based scientific workflow recommender systems: Improving the accuracy of recommendations. In SAI’2015, pages 565–571. IEEE.
16 Zhao, Y., Raicu, I., and Foster, I. (2008). Scientific workflow systems for 21st century, new bottle or new wine? In IEEE Services, pages 467–471. IEEE.