1 |
Arab, S. T., Islam, M. M., Shamsuzzoha, M., Alam, K. F., Muhsin, N., Noguchi, R., and
Ahamed, T. (2022). A review of remote sensing applications in agriculture and forestry
to establish big data analytics. Remote Sensing Application: Regional Perspectives in
Agriculture and Forestry, pages 1–24.
|
|
2 |
Ghouri, A. M. and Mani, V. (2019). Role of real-time information-sharing through
saas: An industry 4.0 perspective. International Journal of Information Management,
49:301–315.
|
|
3 |
Ibrahim, A. M. A., Abdullah, N. S., and Bahari, M. (2023). Software as a service chal-
lenges: A systematic literature review. In Proceedings of the Future Technologies
Conference, pages 257–272. Springer.
|
|
4 |
Jain, P., Coogan, S. C., Subramanian, S. G., Crowley, M., Taylor, S., and Flannigan, M. D.
(2020). A review of machine learning applications in wildfire science and management.
Environmental Reviews, 28(4):478–505.
|
|
5 |
Milan´es-Batista, C., Tamayo-Yero, H., De Oliveira, D., and Nu˜nez-Alvarez, J. (2020).
Application of business intelligence in studies management of hazard, vulnerability
and risk in cuba. In IOP Conference Series: Materials Science and Engineering, vo-
lume 844, page 012033. IOP Publishing.
|
|
6 |
Shah, S. A., Seker, D. Z., Hameed, S., and Draheim, D. (2019). The rising role of big data
analytics and iot in disaster management: recent advances, taxonomy and prospects.
IEEE Access, 7:54595–54614.
|
|
7 |
Silva Junior, J. A. d. and Pacheco, A. d. P. (2021). Avaliac¸ ˜ao de incˆendio em ambiente
de caatinga a partir de imagens landsat-8, ´ındice de vegetac¸ ˜ao realc¸ado e an´alise por
componentes principais. Ciˆencia Florestal, 31:417–439.
|
|
8 |
Subburaj, J., Murugan, K., Keerthana, P., and Aalam, S. S. (2024). Catastropheguard: A
guard against natural catastrophes through advances in ai and deep learning technolo-
gies. In Internet of Things and AI for Natural Disaster Management and Prediction,
pages 28–55. IGI Global.
|
|