1 |
Beutel, D. J. et al. (2020). Flower: A Friendly Federated Learning Research Framework. arXiv preprint arXiv:2007.14390.
|
|
2 |
Chapman, A., Lauro, L., Missier, P., and Torlone, R. (2022). DPDS: assisting data science with data provenance. Proc. VLDB Endow., 15(12):3614–3617.
|
|
3 |
Dwork, C. (2006). Differential privacy. 33rd ICALP 2006, Proceedings, Part II, volume 4052, pages 1–12. Springer.
|
|
4 |
Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for Computational Tasks: A Survey. Computing in Science & Engineering, 10(3):11–21.
|
|
5 |
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press
|
|
6 |
Groth, P. and Moreau, L. (2013). W3C PROV - An Overview of the PROV Family of Documents. Available at https://www.w3.org/TR/ prov-overview/.
|
|
7 |
Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images. Technical report, University of Toronto.
|
|
8 |
Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2020). Federated Optimization in Heterogeneous Networks. Proceedings of Machine Learning and Systems (MLSys). mlsys.org.
|
|
9 |
McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data. Proc. of 20th AISTATS, pages 1273–1282.
|
|
10 |
Peregrina, J.A.,Ortiz,G.,andZirpins,C.(2022). Towards a Metadata Management System for Provenance, Reproducibility and Accountability in Federated Machine Learning. Advances in Service-Oriented and Cloud Computing, pages 5–18. Springer.
|
|
11 |
Pina, D., Chapman, A., Oliveira, D., and Mattoso, M. (2023). Deep learning provenance data integration: a practical approach. IPAW, pages 1542–1550. ACM.
|
|
12 |
Sandler, M., A. Howard, M. Z., Zhmoginov, A., and Chen, L. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4510–4520.
|
|
13 |
Silva, V., Campos, V., Guedes, T., Camata, J., de Oliveira, D., Coutinho, A. L., Valduriez, P., and Mattoso, M. (2020). Dfanalyzer: Runtime dataflow analysis tool for computational science and engineering applications. SoftwareX, 12:100592.
|
|