1 |
Aggarwal, C. C. (2016). Outlier Analysis. Springer International Publishing.
|
|
2 |
Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. (2017). Unsupervised real-time anomaly detection for streaming data. Neurocomputing, 262:134 – 147.
|
|
3 |
Ahmed, M., Mahmood, A. N., and Islam, M. R. (2016). A survey of anomaly detection techniques in financial domain. Future Generation Computer Systems, 55:278 – 288.
|
|
4 |
Ariyaluran Habeeb, R. A., Nasaruddin, F., Gani, A., Targio Hashem, I. A., Ahmed, E., and Imran, M. (2019). Real-time big data processing for anomaly detection: A Survey. International Journal of Information Management, 45:289 – 307.
|
|
5 |
Blázquez-García, A., Conde, A., Mori, U., and Lozano, J. A. (2021). A Review on Outlier/Anomaly Detection in Time Series Data. ACM Computing Surveys, 54(3).
|
|
6 |
Boniol, P., Paparrizos, J., Kang, Y., Palpanas, T., Tsay, R. S., Elmore, A. J., and Franklin, M. J. (2022). Theseus: Navigating the Labyrinth of Time-Series Anomaly Detection. Proceedings of the VLDB Endowment, 15(12):3702 – 3705.
|
|
7 |
Cauteruccio, F., Cinelli, L., Corradini, E., Terracina, G., Ursino, D., Virgili, L., Savaglio, C., Liotta, A., and Fortino, G. (2021). A framework for anomaly detection and classification in Multiple IoT scenarios. Future Generation Computer Systems, 114:322 – 335.
|
|
8 |
Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3).
|
|
9 |
Cook, A. A., Misirli, G., and Fan, Z. (2020). Anomaly Detection for IoT Time-Series Data: A Survey. IEEE Internet of Things Journal, 7(7):6481 – 6494.
|
|
10 |
Darban, Z., Webb, G. I., Pan, S., Aggarwal, C., and Salehi, M. (2024). Deep Learning for Time Series Anomaly Detection: A Survey. ACM Computing Surveys, 57(1):15:1– 15:42.
|
|
11 |
Dixit, P., Bhattacharya, P., Tanwar, S., and Gupta, R. (2022). Anomaly detection in autonomous electric vehicles using AI techniques: A comprehensive survey. Expert Systems, 39(5).
|
|
12 |
Gorard, S. (2005). Revisiting A 90-year-old debate: The advantages of the mean deviation. British Journal of Educational Studies, 53(4):417 – 430.
|
|
13 |
Han, J., Pei, J., and Tong, H. (2022). Data Mining: Concepts and Techniques. Morgan Kaufmann, Cambridge, MA, 4th edition edition.
|
|
14 |
Hasani, Z. (2017). Robust anomaly detection algorithms for real-time big data: Comparison of algorithms. In 2017 6th Mediterranean Conference on Embedded Computing, MECO 2017 - Including ECYPS 2017, Proceedings.
|
|
15 |
Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15(14):5481 – 5487.
|
|
16 |
Ibidunmoye, O., Hernández-Rodriguez, F., and Elmroth, E. (2015). Performance anomaly detection and bottleneck identification. ACM Computing Surveys, 48(1).
|
|
17 |
Li, J., Izakian, H., Pedrycz, W., and Jamal, I. (2021). Clustering-based anomaly detection in multivariate time series data. Applied Soft Computing, 100.
|
|
18 |
Lima, J., Salles, R., Porto, F., Coutinho, R., Alpis, P., Escobar, L., Pacitti, E., and Ogasawara, E. (2022). Forward and Backward Inertial Anomaly Detector: A Novel Time Series Event Detection Method. In 2022 International Joint Conference on Neural Networks (IJCNN), volume 2022-July, pages 1–8.
|
|
19 |
Lima, J., Tavares, L. G., Pacitti, E., Ferreira, J. E., Santos, I., Siqueira, I. G., Carvalho,
D., Porto, F., Coutinho, R., and Ogasawara, E. (2024). Online Event Detection in Streaming Time Series: Novel Metrics and Practical Insights. In Proceedings of the International Joint Conference on Neural Networks, pages 1–8.
|
|
20 |
Moustati, I., Gherabi, N., and Saadi, M. (2024). Time-Series Forecasting Models for Smart Meters Data: An Empirical Comparison and Analysis. Journal Europeen des Systemes Automatises, 57(5):1419 – 1427.
|
|
21 |
Ogasawara, E., Castro, A., Mello, A., Paixão, E., Fraga, F., Lima, J., Souza, J., Baroni, L., Tavares, L., Borges, H., Salles, R., Carvalho, D., Bezerra, E., Coutinho, R., Pacitti, E., and Porto, F. (2024). harbinger: A Unified Time Series Event Detection Framework.
|
|
22 |
Ogasawara, E., Salles, R., Porto, F., and Pacitti, E. (2025). Event Detection in Time Series. Springer, 2025 edition.
|
|
23 |
Pang, G., Shen, C., Cao, L., and Van Den Hengel, A. (2021). Deep Learning for Anomaly Detection: A Review. ACM Computing Surveys, 54(2).
|
|
24 |
Paparrizos, J., Kang, Y., Boniol, P., Tsay, R. S., Palpanas, T., and Franklin, M. J. (2022). TSB-UAD: An End-to-End Benchmark Suite for Univariate Time-Series Anomaly Detection. Proceedings of the VLDB Endowment, 15:1697 – 1711.
|
|
25 |
Ren, H., Xu, B., Wang, Y., Yi, C., Huang, C., Kou, X., Xing, T., Yang, M., Tong, J., and Zhang, Q. (2019). Time-series anomaly detection service at Microsoft. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 3009 – 3017.
|
|
26 |
Salles, R., Escobar, L., Baroni, L., Zorrilla, R., Ziviani, A., Kreischer, V., Delicato, F., Pires, P., Maia, L., Coutinho, R., Assis, L., and Ogasawara, E. (2020). Um framework para integração e análise de métodos de detecção de eventos em séries temporais. In Anais do Simpósio Brasileiro de Banco de Dados (SBBD). SBC.
|
|
27 |
Salles, R., Lima, J., Reis, M., Coutinho, R., Pacitti, E., Masseglia, F., Akbarinia, R., Chen, C., Garibaldi, J., Porto, F., and Ogasawara, E. (2024). SoftED: Metrics for soft evaluation of time series event detection. Computers and Industrial Engineering, 198.
|
|
28 |
Scharf, L. L. and Demeure, C. (1991). Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Addison-Wesley Publishing Company.
|
|
29 |
Souza, J., Pãixao, E., Fraga, F., Baroni, L., Alves, R. F. S., Belloze, K., Dos Santos, J.,
Bezerra, E., Porto, F., and Ogasawara, E. (2024). REMD: A Novel Hybrid Anomaly Detection Method Based on EMD and ARIMA. In Proceedings of the International Joint Conference on Neural Networks, pages 1–8.
|
|
30 |
Talagala, P. D., Hyndman, R. J., Smith-Miles, K., Kandanaarachchi, S., and Muñoz, M. A. (2020). Anomaly Detection in Streaming Nonstationary Temporal Data. Journal of Computational and Graphical Statistics, 29(1):13 – 27.
|
|
31 |
Truong, C., Oudre, L., and Vayatis, N. (2020). Selective review of offline change point detection methods. Signal Processing, 167.
|
|
32 |
Wenig, P., Schmidl, S., and Papenbrock, T. (2022). TimeEval: A Benchmarking Toolkit for Time Series Anomaly Detection Algorithms. Proceedings of the VLDB Endowment, 15(12):3678 – 3681.
|
|
33 |
Wu, R. and Keogh, E. J. (2023). Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress. IEEE Transactions on Knowledge and Data Engineering, 35(3):2421 – 2429.
|
|
34 |
Zhang, M., Guo, J., Li, X., and Jin, R. (2020). Data-driven anomaly detection approach for time-series streaming data. Sensors (Switzerland), 20(19):1 – 17.
|
|