1 |
Abbas, Y. and Malik, M. S. I. (2023). Defective products identification framework using online reviews. Electronic Commerce Research, 23(2):899–920.
|
|
2 |
Chavan, A., Magazine, R., Kushwaha, S., Debbah, M., and Gupta, D. (2024). Faster and lighter llms: A survey on current challenges and way forward. arXiv preprint arXiv:2402.01799.
|
|
3 |
Chaves, I. C., de Paula, M. R. P., Leite, L. G., Queiroz, L. P., Gomes, J. P. P., and Machado, J. C. (2016). Banhfap: A bayesian network based failure prediction approach for hard disk drives. In 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), pages 427–432.
|
|
4 |
Cheng, Z., Han, S., Lee, P. P., Li, X., Liu, J., and Li, Z. (2022). An in-depth correlative study between dram errors and server failures in production data centers. In 2022 41st International Symposium on Reliable Distributed Systems (SRDS), pages 262–272. IEEE.
|
|
5 |
Hakami, A. (2024). Strategies for overcoming data scarcity, imbalance, and feature selection challenges in machine learning models for predictive maintenance. Scientific Reports, 14(1):9645.
|
|
6 |
Lima, F. D. S., Pereira, F. L. F., Chaves, I. C., Gomes, J. P. P., and Machado, J. C. (2018). Evaluation of recurrent neural networks for hard disk drives failure prediction. In 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), pages 85–90. IEEE.
|
|
7 |
Marella, R. (2023). ctransformers:python bindings for the transformer models implemented in c/c++ using ggml library. https://github.com/marella/ctransformers. Accessed: 2024-06-29.
|
|
8 |
Park, Y., Fan, S., and Hsu, C. (2020). A review on fault detection and process diagnostics in industrial processes. processes, 8 (9), 1123.
|
|
9 |
Queiroz, L. P., Rodrigues, F. C. M., Gomes, J. P. P., Brito, F. T., Chaves, I. C., Paula, M. R. P., Salvador, M. R., and Machado, J. C. (2016). A fault detection method for hard disk drives based on mixture of gaussians and nonparametric statistics. IEEE Transactions on Industrial Informatics, 13(2):542–550.
|
|
10 |
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.
|
|
11 |
Rombach, K. (2023). Fault Diagnostics under label and data scarcity. PhD thesis, ETH Zurich.
|
|
12 |
Schroeder, B. and Gibson, G. A. (2009). A large-scale study of failures in high-performance computing systems. IEEE transactions on Dependable and Secure Computing, 7(4):337–350.
|
|
13 |
Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning research, 9(11).
|
|
14 |
Xia, F., Song, H., Yan, L.-C., Li, Y., and Wang, L.-J. (2021). A survey on failure prediction in large-scale computing systems. In 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pages 2028–2033. IEEE.
|
|
15 |
Xu, F., Han, S., Lee, P. P., Liu, Y., He, C., and Liu, J. (2021). General feature selection for failure prediction in large-scale ssd deployment. In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages 263–270. IEEE.
|
|
16 |
Young, A., Chen, B., Li, C., Huang, C., Zhang, G., Zhang, G., Li, H., Zhu, J., Chen, J., Chang, J., et al. (2024). Yi: Open foundation models by 01. ai. arXiv preprint arXiv:2403.04652.
|
|