1 |
Akhtyamova, L. (2020). Named entity recognition in spanish biomedical literature: Short
review and bert model. In 2020 26th Conference of Open Innovations Association
(FRUCT), pages 1–7. IEEE.
|
|
2 |
Churpek, M. M., Adhikari, R., and Edelson, D. P. (2016). The value of vital sign trends
for detecting clinical deterioration on the wards. Resuscitation, 102:1–5.
|
|
3 |
Clinical-BR-LlaMA-2-7B (2024). Acesso em 12 jan. 2025.
|
|
4 |
COFEN (2015). Guia de Recomendações para Registro de Enfermagem no Prontuário
do Paciente e outros Documentos de Enfermagem. Conselho Federal de Enfermagem,
Brasília. Versão Web.
|
|
5 |
COFEN (2024). Resolução COFEN nº 736 de 17 de janeiro de 2024. Dispõe sobre a implementação do Processo de Enfermagem em todo contexto socioambiental onde ocorre o cuidado de enfermagem.
|
|
6 |
Cripwell, L., Constantin, A., and Bernard, E. (2024). Nuextract 1.5 - multilingual, infinite context, still small, and better than GPT-4o!
|
|
7 |
Demner-Fushman, D., Chapman, W. W., and McDonald, C. J. (2009). What can natural language processing do for clinical decision support? Journal of Biomedical Informatics, 42(5):760–772.
|
|
8 |
Izbicki, R., and Santos, T. M. (2020). Aprendizado de máquina: uma abordagem estatística. Rafael Izbicki, São Carlos, SP.
|
|
9 |
Luo, R., et al. (2022). BioGPT: generative pre-trained transformer for biomedical text generation and mining. Briefings in Bioinformatics, 23(6):bbac409.
|
|
10 |
Nadeau, D. (2007). Semi-Supervised Named Entity Recognition: Learning to Recognize 100 Entity Types with Little Supervision. Tese de doutorado, University of Ottawa.
|
|
11 |
Schneider, E. T. R., et al. (2020). BioBERTpt: a Portuguese neural language model for clinical named entity recognition. In Proceedings of the 3rd Clinical Natural Language Processing Workshop.
|
|
12 |
Schneider, E. T. R., et al. (2021). A GPT-2 language model for biomedical texts in Portuguese. In 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), pages 474–479. IEEE.
|
|
13 |
Song, B., Li, F., Liu, Y., and Zeng, X. (2021). Deep learning methods for biomedical named entity recognition: a survey and qualitative comparison. Briefings in Bioinformatics, 22(6):1–18.
|
|
14 |
Torres, A. M. N., Bersot, R. P. M., and Colombo, C. S. (2024). A extração de entidades nomeadas em relatos de casos clínicos. In Anais do XX Congresso Brasileiro de Informática em Saúde, Belo Horizonte, MG. Sociedade Brasileira de Informática em Saúde.
|
|
15 |
Touvron, H., Martin, L., Stone, K., Albert, P., et al. (2023). LLaMA 2: Open foundation and fine-tuned chat models.
|
|
16 |
Vaswani, A., et al. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
|
|
17 |
Wang, B., Xie, Q., Pei, J., Chen, Z., Tiwari, P., Li, Z., and Fu, J. (2023). Pre-trained language models in biomedical domain: a systematic survey. ACM Computing Surveys, 56(3):1–52.
|
|
18 |
Yadav, V., and Bethard, S. (2018). A survey on recent advances in named entity recognition from deep learning models. In Proceedings of the 27th International Conference on Computational Linguistics, pages 2145–2158.
|
|