1 |
Aldosari, H., Elfouly, R., and Ammar, R. (2020). Evaluation of machine learning-based regression techniques for prediction of oil and gas pipelines defect. In 2020 International Conference on Computational
Science and Computational Intelligence (CSCI), pages 1452–1456.
|
|
2 |
Bender, Roman, Damien Féron, Douglas Mills, Stefan Ritter, Ralph Bäßler, Dirk Bettge, Iris De Graeve et al. "Corrosion challenges towards a sustainable society." Materials and corrosion 73, no. 11 (2022): 1730-1751.
|
|
3 |
Heuel, Janis, and Wolfgang Friederich. "Suppression of wind turbine noise from seismological data using nonlinear thresholding and denoising autoencoder." Journal of Seismology 26, no. 5 (2022): 913-934.
|
|
4 |
Kaji, Mohammadreza, Jamshid Parvizian, and Hans Wernher van de Venn. "Constructing a reliable health indicator for bearings using convolutional autoencoder and continuous wavelet transform." Applied Sciences 10, no. 24 (2020): 8948.
|
|
5 |
Keogh, Eamonn, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. "Dimensionality reduction for fast similarity search in large time series databases." Knowledge and information Systems 3, no. 3 (2001): 263-286.
|
|
6 |
Li, P., Pei, Y., & Li, J. (2023). A comprehensive survey on design and application of autoencoder in deep learning. Applied Soft Computing, 138, 110176.
|
|
7 |
May, Z., Alam, M. K., Nayan, N. A., Rahman, N. A. I. A., & Mahmud, M. S. (2021). Acoustic emission corrosion feature extraction and severity prediction using hybrid wavelet packet transform and linear support vector classifier. Plos one, 16(12), e0261040.
|
|
8 |
Multiphysics C (1998). Introduction to COMSOL Multiphysics®. COMSOL Multiphysics, Burlington, MA. Accessed February 9, 2018.
|
|
9 |
Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning is not all you need. Information Fusion, 81, 84-90.
|
|
10 |
Song, L., Cui, X., Han, X., Gao, Y., Liu, F., Yu, Y., & Yuan, Y. (2024). A Non-Metallic pipeline leak size recognition method based on CWT acoustic image transformation and CNN. Applied Acoustics, 225, 110180.
|
|
11 |
Sung, Y., Jeon, H. J., Kim, D., Kim, M. S., Choi, J., Jo, H. R., ... & Lim, H. G. (2024). Internal pipe corrosion assessment method in water distribution system using ultrasound and convolutional neural networks. npj Clean Water, 7(1), 63.
|
|
12 |
Xiao, R., Hu, Q., & Li, J. (2019). Leak detection of gas pipelines using acoustic signals based on wavelet transform and Support Vector Machine. Measurement, 146, 479-489.
|
|
13 |
Xu, Z. D., Zhu, C., & Shao, L. W. (2021). Damage identification of pipeline based on ultrasonic guided wave and wavelet denoising. Journal of Pipeline Systems Engineering and Practice, 12(4), 04021051.
|
|
14 |
Zang, X., Xu, Z. D., Lu, H., Zhu, C., & Zhang, Z. (2023). Ultrasonic guided wave techniques and applications in pipeline defect detection: A review. International Journal of Pressure Vessels and Piping, 206, 105033.
|
|