SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Washington Cunha(washingtoncunha@dcc.ufmg.br)
2 Leonardo Rocha(lcrocha@ufsj.edu.br)
3 Marcos Gonçalves(mgoncalv@dcc.ufmg.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 B.-Naranjo, M., Martínez-Merino, L. I., and Rodríguez-Chía, A. M. (2021). A robust svm-based approach with feat. selection and outliers detection for classification problems. Expert Systems with Applications.
2 Canuto, S., Sousa, D. X., Gonçalves, M. A., and Rosa, T. C. (2018). A thorough evaluation of distancebased meta-features for automated text classification. IEEE TKDE.
3 Cunha,W., Canuto, S., Viegas, F., Salles, T., Gomes, C., Mangaravite, V., Resende, E., Rosa, T., Gonçalves, M., and Rocha, L. (2020). Extended pre-processing pipeline for text classification: On the role of metafeature representations, sparsification and selective sampling. IP&M.
4 Cunha, W., Mangaravite, V., Gomes, C., Canuto, S., Resende, E., Nascimento, C., Viegas, F., França, C., Martins, W. S., Almeida, J. M., Rosa, T., Rocha, L., and Gonçalves, M. A. (2021). On the cost-effectiveness of neural and non-neural approaches and representations for text classification. IP&M.
5 Cunha, W., Viegas, F., Alencar, R., Mourão, F., Salles, T., Carvalho, D., Gonçalves, M. A., and Rocha, L. (2018). A feature-oriented sentiment rating for mobile app reviews. In WWW’18.
6 Dacrema, M. F., Cremonesi, P., and Jannach, D. (2019). Are we really making much progress? In RecSys.
7 Kastrati, Z., Imran, A. S., and Yayilgan, S. Y. (2019). The impact of deep learning on document classification using semantically rich representations. IP&M.
8 Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. (2013). Understanding variable importances in forests of randomized trees. In Neural Information Processing Systems NIPS’13.
9 Mendes, L. F., Gonçalves, M., Cunha, W., Rocha, L., Couto-Rosa, T., and Martins, W. (2020). “Keep it simple, lazy” – MetaLazy: A new MetaStrategy for lazy text Classification. In ACM CIKM’20.
10 Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and Joulin, A. (2018). Advances in pre-training distributed word representations. In International Conf. on Language Resources and Evaluation LREC’18.
11 Schoenfeld, B., Giraud-Carrier, C. G., Poggemann, M., Christensen, J., and Seppi, K. D. (2018). Preprocessor selection for machine learning pipelines. CoRR, abs/1810.09942.
12 Viegas, F., Canuto, S., Gomes, C., Luiz, W., Rosa, T., Ribas, S., Rocha, L., and Gonçalves, M. A. (2019). Cluwords: Exploiting semantic word clustering representation for enhanced topic modeling. In WSDM.
13 Viegas, F., Cunha, W., Gomes, C., Pereira, A., Rocha, L., and Goncalves, M. (2020). CluHTM. In ACL’20.
14 Viegas, F., Luiz, W., Gomes, C., Khatibi, A., Canuto, S., Mourão, F., Salles, T., Rocha, L., and Gonçalves, M. A. (2018). Semantically-enhanced topic modeling. In ACM CIKM’18.
15 Zamani, H., Dehghani, M., Croft, W. B., Learned-Miller, E., and Kamps, J. (2018). From neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing. In CIKM’18.