1 |
B.-Naranjo, M., Martínez-Merino, L. I., and Rodríguez-Chía, A. M. (2021). A robust svm-based approach with feat. selection and outliers detection for classification problems. Expert Systems with Applications.
|
|
2 |
Canuto, S., Sousa, D. X., Gonçalves, M. A., and Rosa, T. C. (2018). A thorough evaluation of distancebased meta-features for automated text classification. IEEE TKDE.
|
|
3 |
Cunha,W., Canuto, S., Viegas, F., Salles, T., Gomes, C., Mangaravite, V., Resende, E., Rosa, T., Gonçalves, M., and Rocha, L. (2020). Extended pre-processing pipeline for text classification: On the role of metafeature representations, sparsification and selective sampling. IP&M.
|
|
4 |
Cunha, W., Mangaravite, V., Gomes, C., Canuto, S., Resende, E., Nascimento, C., Viegas, F., França, C., Martins, W. S., Almeida, J. M., Rosa, T., Rocha, L., and Gonçalves, M. A. (2021). On the cost-effectiveness of neural and non-neural approaches and representations for text classification. IP&M.
|
|
5 |
Cunha, W., Viegas, F., Alencar, R., Mourão, F., Salles, T., Carvalho, D., Gonçalves, M. A., and Rocha, L. (2018). A feature-oriented sentiment rating for mobile app reviews. In WWW’18.
|
|
6 |
Dacrema, M. F., Cremonesi, P., and Jannach, D. (2019). Are we really making much progress? In RecSys.
|
|
7 |
Kastrati, Z., Imran, A. S., and Yayilgan, S. Y. (2019). The impact of deep learning on document classification using semantically rich representations. IP&M.
|
|
8 |
Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. (2013). Understanding variable importances in forests of randomized trees. In Neural Information Processing Systems NIPS’13.
|
|
9 |
Mendes, L. F., Gonçalves, M., Cunha, W., Rocha, L., Couto-Rosa, T., and Martins, W. (2020). “Keep it simple, lazy” – MetaLazy: A new MetaStrategy for lazy text Classification. In ACM CIKM’20.
|
|
10 |
Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and Joulin, A. (2018). Advances in pre-training distributed word representations. In International Conf. on Language Resources and Evaluation LREC’18.
|
|
11 |
Schoenfeld, B., Giraud-Carrier, C. G., Poggemann, M., Christensen, J., and Seppi, K. D. (2018). Preprocessor selection for machine learning pipelines. CoRR, abs/1810.09942.
|
|
12 |
Viegas, F., Canuto, S., Gomes, C., Luiz, W., Rosa, T., Ribas, S., Rocha, L., and Gonçalves, M. A. (2019). Cluwords: Exploiting semantic word clustering representation for enhanced topic modeling. In WSDM.
|
|
13 |
Viegas, F., Cunha, W., Gomes, C., Pereira, A., Rocha, L., and Goncalves, M. (2020). CluHTM. In ACL’20.
|
|
14 |
Viegas, F., Luiz, W., Gomes, C., Khatibi, A., Canuto, S., Mourão, F., Salles, T., Rocha, L., and Gonçalves, M. A. (2018). Semantically-enhanced topic modeling. In ACM CIKM’18.
|
|
15 |
Zamani, H., Dehghani, M., Croft, W. B., Learned-Miller, E., and Kamps, J. (2018). From neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing. In CIKM’18.
|
|