1 |
Omar, K. S., Mondal, P., Khan, N. S., Rizvi, M. R. K., and Islam, M. N. (2019). A
machine learning approach to predict autism spectrum disorder. In 2019 International
Conference on Electrical, Computer and Communication Engineering (ECCE), page
1–6.
|
|
2 |
Hertz-Picciotto, I., Schmidt, R. J., Walker, C. K., Bennett, D. H., Oliver, M., Shedd-
Wise, K. M., LaSalle, J. M., Giulivi, C., Puschner, B., Thomas, J., Roa, D. L., Pessah,
I. N., Van de Water, J., Tancredi, D. J., and Ozonoff, S. (2018). A prospective study
of environmental exposures and early biomarkers in autism spectrum disorder: De-
sign, protocols, and preliminary data from the marbles study. Environmental Health
Perspectives, 126(11):117004.
|
|
3 |
Sharma, S. R., Gonda, X., and Tarazi, F. I. (2018). Autism spectrum disorder: Classifica-
tion, diagnosis and therapy. Pharmacology Therapeutics, 190:91–104.
|
|
4 |
Hodges, H., Fealko, C., and Soares, N. (2020). Autism spectrum disorder: defini-
tion, epidemiology, causes, and clinical evaluation. Translational Pediatrics, 9(Suppl
1):S55–S65.
|
|
5 |
Tylee, D. S., Hess, J. L., Quinn, T. P., Barve, R., Huang, H., Zhang-James, Y., Chang, J.,
Stamova, B. S., Sharp, F. R., Hertz-Picciotto, I., Faraone, S. V., Kong, S. W., and Glatt,
S. J. (2017). Blood transcriptomic comparison of individuals with and without autism
spectrum disorder: A combined-samples mega-analysis. American journal of medical
genetics. Part B, Neuropsychiatric genetics: the official publication of the International
Society of Psychiatric Genetics, 174(3):181–201.
|
|
6 |
Liu, W., Li, M., and Yi, L. (2016). Identifying children with autism spectrum disorder
based on their face processing abnormality: A machine learning framework. Autism
Research, 9(8):888–898.
|
|
7 |
Zablotsky, B., Black, L. I., and Blumberg, S. J. (2017). Estimated prevalence of children
with diagnosed developmental disabilities in the united states, 2014-2016. NCHS data
brief, (291):1–8.
|
|
8 |
Lord, C., Brugha, T. S., Charman, T., Cusack, J., Dumas, G., Frazier, T., Jones, E. J. H.,
Jones, R. M., Pickles, A., State, M. W., Taylor, J. L., and Veenstra-VanderWeele, J.
(2020). Autism spectrum disorder. Nature Reviews Disease Primers, 6(1):1–23.
|
|
9 |
Zhang, F., Savadjiev, P., Cai, W., Song, Y., Rathi, Y., Tunc¸, B., Parker, D., Kapur, T.,
Schultz, R. T., Makris, N., Verma, R., and O’Donnell, L. J. (2018). Whole brain
white matter connectivity analysis using machine learning: an application to autism.
NeuroImage, 172:826–837.
|
|
10 |
Mordaunt, C. E., Park, B. Y., Bakulski, K. M., Feinberg, J. I., Croen, L. A., Ladd-Acosta,
C., Newschaffer, C. J., Volk, H. E., Ozonoff, S., Hertz-Picciotto, I., LaSalle, J. M.,
Schmidt, R. J., and Fallin, M. D. (2019). A meta-analysis of two high-risk prospective
cohort studies reveals autism-specific transcriptional changes to chromatin, autoim-
mune, and environmental response genes in umbilical cord blood. Molecular Autism,
10(1):36.
|
|
11 |
Newschaffer, C. J., Croen, L. A., Fallin, M. D., Hertz-Picciotto, I., Nguyen, D. V., Lee,
N. L., Berry, C. A., Farzadegan, H., Hess, H. N., Landa, R. J., Levy, S. E., Massolo,
M. L., Meyerer, S. C., Mohammed, S. M., Oliver, M. C., Ozonoff, S., Pandey, J.,
Schroeder, A., and Shedd-Wise, K. M. (2012). Infant siblings and the investigation of
autism risk factors. Journal of Neurodevelopmental Disorders, 4(1):7.
|
|
12 |
Omar, K. S., Mondal, P., Khan, N. S., Rizvi, M. R. K., and Islam, M. N. (2019). A
machine learning approach to predict autism spectrum disorder. In 2019 International
Conference on Electrical, Computer and Communication Engineering (ECCE), page
1–6.
|
|
13 |
Sharma, S. R., Gonda, X., and Tarazi, F. I. (2018). Autism spectrum disorder: Classifica-
tion, diagnosis and therapy. Pharmacology Therapeutics, 190:91–104.
|
|
14 |
Tylee, D. S., Hess, J. L., Quinn, T. P., Barve, R., Huang, H., Zhang-James, Y., Chang, J.,
Stamova, B. S., Sharp, F. R., Hertz-Picciotto, I., Faraone, S. V., Kong, S. W., and Glatt,
S. J. (2017). Blood transcriptomic comparison of individuals with and without autism
spectrum disorder: A combined-samples mega-analysis. American journal of medical
genetics. Part B, Neuropsychiatric genetics: the official publication of the International
Society of Psychiatric Genetics, 174(3):181–201.
|
|
15 |
Zablotsky, B., Black, L. I., and Blumberg, S. J. (2017). Estimated prevalence of children
with diagnosed developmental disabilities in the united states, 2014-2016. NCHS data
brief, (291):1–8.
|
|
16 |
Zhang, F., Savadjiev, P., Cai, W., Song, Y., Rathi, Y., Tunc¸, B., Parker, D., Kapur, T.,
Schultz, R. T., Makris, N., Verma, R., and O’Donnell, L. J. (2018). Whole brain
white matter connectivity analysis using machine learning: an application to autism.
NeuroImage, 172:826–837.
|
|