1 |
Sekkal, R. N., Bereksi-Reguig, F., Ruiz-Fernandez, D., Dib, N., and Sekkal, S. (2022). Automatic sleep stage classification: From classical machine learning methods to deep learning. Biomedical Signal Processing and Control, 77:103751.
|
|
2 |
Birrer, V., Elgendi, M., Lambercy, O., and Menon, C. (2024). Evaluating reliability in wearable devices for sleep staging. NPJ Digital Medicine, 7(1):74.
|
|
3 |
Walch, O., Huang, Y., Forger, D., and Goldstein, C. (2019). Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device. Sleep, 42(12):zsz180.
|
|
4 |
Chaparro-Vargas, R. and Cvetkovic, D. (2013). A single-trial toolbox for advanced sleep polysomnographic preprocessing. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5829–5832. IEEE.
|
|
5 |
Charlton, P. H., Marozas, V., Mejía-Mejía, E., Kyriacou, P. A., and Mant, J. (2025). Determinants of photoplethysmography signal quality at the wrist. PLOS Digital Health, 4(6):e0000585.
|
|
6 |
Wang, Q., Zhao, D., Wang, Y., et al. (2019). Ensemble learning algorithm based on multi-parameters for sleep staging. Medical & Biological Engineering & Computing, 57(8):1693–1707.
|
|
7 |
Chen, X., Xu, X., Liu, A., Lee, S., Chen, X., Zhang, X., McKeown, M. J., and Wang, Z. J. (2019). Removal of muscle artifacts from the eeg: A review and recommendations. IEEE Sensors Journal, 19(14):5353–5368.
|
|
8 |
Chriskos, P., Frantzidis, C. A., Gkivogkli, P. T., Bamidis, P. D., and Kourtidou-Papadeli, C. (2018). Achieving accurate automatic sleep staging on manually pre-processed eeg data through synchronization feature extraction and graph metrics. Frontiers in human neuroscience, 12:110.
|
|
9 |
Correa, M. A. G. and Leber, E. L. (2011). Noise removal from eeg signals in polisomnographic records applying adaptive filters in cascade. Adaptive filtering applications, 34:1–26.
|
|
10 |
de Zambotti, M., Goldstein, C., Cook, J., Menghini, L., Altini, M., Cheng, P., and Robillard, R. (2024). State of the science and recommendations for using wearable technology in sleep and circadian research. Sleep, 47(4):zsad325.
|
|
11 |
Fedorin, I. and Slyusarenko, K. (2021). Consumer smartwatches as a portable psg: Lstm based neural networks for a sleep-related physiological parameters estimation. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 849–452.
|
|
12 |
Gunter, K. M., Brink-Kjaer, A., Mignot, E., Sørensen, H. B., During, E., and Jennum, P. (2023). Svit: A spectral vision transformer for the detection of rem sleep behavior disorder. IEEE Journal of Biomedical and Health Informatics, 27(9):4285–4292.
|
|
13 |
Huang, X., Shirahama, K., Irshad, M. T., Nisar, M. A., Piet, A., and Grzegorzek, M. (2023). Sleep stage classification in children using self-attention and gaussian noise data augmentation. Sensors, 23(7).
|
|
14 |
Kim, J., Lee, J., and Shin, M. (2017). Sleep stage classification based on noise-reduced fractal property of heart rate variability. Procedia Computer Science, 116:435–440. Discovery and innovation of computer science technology in artificial intelligence era: The 2nd international Conference on Computer Science and Computational Intelligence (ICCSCI 2017).
|
|
15 |
Metsis, V., Schizas, I. D., and Marshall, G. (2015). Real-time subspace denoising of polysomnographic data. In Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, pages 1–4.
|
|
16 |
Permana, Z. Z. R., Sari, R. I., Febriani, N. S., and Setiawan, A. W. (2023). Effect of smote for sleep stages classification using decision tree, k-nearest neighbor and random forest. In 2023 International Conference on Electrical Engineering and Informatics (ICEEI), pages 1–6.
|
|
17 |
Phan, H., Andreotti, F., Cooray, N., Chén, O. Y., and De Vos, M. (2019). Joint classification and prediction cnn framework for automatic sleep stage classification. IEEE Transactions on Biomedical Engineering, 66(5):1285–1296.
|
|
18 |
Sekkal, R. N., Bereksi-Reguig, F., Ruiz-Fernandez, D., Dib, N., and Sekkal, S. (2022). Automatic sleep stage classification: From classical machine learning methods to deep learning. Biomedical Signal Processing and Control, 77:103751.
|
|
19 |
Walch, O., Huang, Y., Forger, D., and Goldstein, C. (2019). Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device. Sleep, 42(12):zsz180.
|
|
20 |
Wang, Q., Zhao, D., Wang, Y., et al. (2019). Ensemble learning algorithm based on multi-parameters for sleep staging. Medical & Biological Engineering & Computing, 57(8):1693–1707.
|
|