1 |
Araújo, T. B., Pires, C. E. S., Mestre, D. G., Nóbrega, T. P. d., Nascimento, D. C. d., and Stefanidis, K. (2019). A noise tolerant and schema-agnostic blocking technique for entity resolution. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pages 422–430.
|
|
2 |
Christen, P. and Christen, P. (2012). The data matching process. Springer.
|
|
3 |
Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S. (2007). Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16.
|
|
4 |
Gagliardelli, L., Papadakis, G., Simonini, G., Bergamaschi, S., Palpanas, T., et al. (2022). Generalized supervised meta-blocking. Proceedings of the VLDB Endowment, 15(9):1902–1910.
|
|
5 |
Getoor, L. and Machanavajjhala, A. (2012). Entity resolution: theory, practice & open challenges. Proceedings of the VLDB Endowment, 5(12):2018–2019.
|
|
6 |
Hand, D. and Christen, P. (2018). A note on using the f-measure for evaluating record linkage algorithms. Statistics and Computing, 28:539–547.
|
|
7 |
Hassanzadeh, O., Chiang, F., Lee, H. C., and Miller, R. J. (2009). Framework for evaluating clustering algorithms in duplicate detection. Proceedings of the VLDB Endowment, 2(1):1282–1293.
|
|
8 |
Li, B.-H., Liu, Y., Zhang, A.-M., Wang, W.-H., and Wan, S. (2020). A survey on blocking technology of entity resolution. Journal of Computer Science and Technology, 35:769-793.
|
|
9 |
Li, H., Li, S., Hao, F., Zhang, C. J., Song, Y., and Chen, L. (2024). Booster: leveraging large language models for enhancing entity resolution. In Companion Proceedings of the ACM Web Conference 2024, pages 1043–1046.
|
|
10 |
Mestre, D. G., Pires, C. E. S., and Nascimento, D. C. (2017a). Towards the efficient parallelization of multi-pass adaptive blocking for entity matching. Journal of Parallel and Distributed Computing, 101:27–40.
|
|
11 |
Mestre, D. G., Pires, C. E. S., Nascimento, D. C., de Queiroz, A. R. M., Santos, V. B., and Araujo, T. B. (2017b). An efficient spark-based adaptive windowing for entity matching. Journal of Systems and Software, 128:1–10.
|
|
12 |
Nascimento, D. C., Pires, C. E., and Mestre, D. (2016). Data quality monitoring of cloud databases based on data quality slas. In Big-Data Analytics and Cloud Computing: Theory, Algorithms and Applications, pages 3–20. Springer.
|
|
13 |
Nascimento, D. C., Pires, C. E. S., and Mestre, D. G. (2020). Exploiting block co occurrence to control block sizes for entity resolution. Knowledge and Information Systems, 62(1):359–400.
|
|
14 |
Papadakis, G., Koutrika, G., Palpanas, T., and Nejdl, W. (2013). Meta-blocking: Taking entity resolutionto the next level. IEEE Transactions on Knowledge and Data Engineering, 26(8):1946–1960.
|
|
15 |
Papadakis, G., Papastefanatos, G., and Koutrika, G. (2014). Supervised meta-blocking. Proceedings of the VLDB Endowment, 7(14):1929–1940.
|
|
16 |
Papadakis, G., Papastefanatos, G., Palpanas, T., and Koubarakis, M. (2016a). Scaling entity resolution to large, heterogeneous data with enhanced meta-blocking. In EDBT, pages 221–232.
|
|
17 |
Papadakis, G., Skoutas, D., Thanos, E., and Palpanas, T. (2020). Blocking and filtering techniques for entity resolution: A survey. ACM Computing Surveys (CSUR), 53(2):1-42.
|
|
18 |
Papadakis, G., Svirsky, J., Gal, A., and Palpanas, T. (2016b). Comparative analysis of approximate blocking techniques for entity resolution. Proceedings of the VLDB Endowment, 9(9):684–695.
|
|
19 |
Zeakis, A., Papadakis, G., Skoutas, D., and Koubarakis, M. (2023). Pre-trained embeddings for entity resolution: an experimental analysis. Proceedings of the VLDB Endowment, 16(9):2225–2238.
|
|