1 |
Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: An efficient access method for similarity search in metric spaces. In VLDB, pages 426–435, Atenas, Grécia.
|
|
2 |
Gama, J. (2012). A survey on learning from data streams: current and future trends. Progress in Artificial Intelligence, 1(1):45–55.
|
|
3 |
Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In SIGMOD, pages 47–57, Boston, Massachusetts.
|
|
4 |
Lichman, M. (2013). UCI Machine Learning Repository, University of California, Irvine, http://archive.ics.uci.edu/ml.
|
|
5 |
Navarro, G. and Reyes, N. (2016). New dynamic metric indices for secondary memory. Information Systems, 59:48–78.
|
|
6 |
Oliveira, P., Traina, C., and Kaster, D. (2015). Improving the pruning ability of dynamic metric access methods with local additional pivots and anticipation of information. In ADBIS, LNCS 9282, pages 18–31, Poitiers, França. Springer.
|
|
7 |
Skopal, T. (2006). On fast non-metric similarity search by metric access methods. In EDBT, LNCS 3896, pages 718–736, Munique, Alemanha. Springer.
|
|
8 |
Souza, J., Razente, H., and Barioni, M. C. (2014). Optimizing metric access methods for querying and mining complex data types. J. Braz. Comput. Soc., 20(1):1.
|
|
9 |
Traina, C., Traina, A., Faloutsos, C., and Seeger, B. (2002). Fast indexing and visualization of metric data sets using slim-trees. IEEE Trans Knowl Data Eng, 14(2):244–260.
|
|
10 |
Vieira, M. R., Jr., C. T., Chino, F. J. T., and Traina, A. J. M. (2010). Dbm-tree: A dynamic metric access method sensitive to local density data. JIDM, 1(1):111–128.
|
|