1 |
Biedermann, K. (1997). How triadic diagrams represent conceptual structures. In Lukose, D., Delugach, H., Keeler, M., Searle, L., and Sowa, J., editors, Conceptual Structures: Fulfilling Peirce’s Dream, pages 304–317, Berlin, Heidelberg. Springer Berlin Heidelberg.
|
|
2 |
De Coninck, D., d’Haenens, L., Molenberghs, G., Declercq, A., Delecluse, C., Van Roie, E., and Matthijs, K. (2022). Updating ‘perceptions and opinions on the covid-19 pandemic in flanders, belgium’ with data of two additional waves of a longitudinal study. Data in Brief, 42:108010.
|
|
3 |
Diggle, P. J. (1994). Analysis of longitudinal data. Technometrics, 45:181 – 181.
|
|
4 |
Ganter, B. and Wille, R. (2012). Formal concept analysis: mathematical foundations. Springer Science & Business Media.
|
|
5 |
Gupta, A., Kumar, N., and Bhatnagar, V. (2007). Analysis of Medical Data using Data Mining and Formal Concept Analysis
|
|
6 |
Kim, E.-H., Kim, H.-G., Hwang, S.-H., and Lee, S.-I. (2015). Farm: An fca-based association rule miner. Knowledge-Based Systems, 85:277–297.
|
|
7 |
Lehmann, F. and Wille., R. (1995). A triadic approach to formal concept analysis. conceptual structures: ap-plications, implementation and theory. Springer.
|
|
8 |
Missaoui, R. and Emamirad, K. (2017). Lattice miner-a formal concept analysis tool. In 14th International Conference on Formal Concept Analysis, page 91.
|
|
9 |
Missaoui, R. and Kwuida., L. (2011). Mining triadic associa-tion rules from ternary relations. In Inter. Conf. on Formal Concept, Springer, pages 204–218.
|
|
10 |
Ribeiro, C. E., Brito, L. H. S., Nobre, C. N., Freitas, A. A., and Zárate, L. E. (2017). A revision and analysis of the comprehensiveness of the main longitudinal studies of human aging for data mining research. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(3):e1202.
|
|
11 |
Singh, P. K., Kumar, C. A., and Gani, A. (2016). A comprehensive survey on formal concept analysis, its research trends and applications. 26(2):495–516.
|
|
12 |
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., and Lakhal, L. (2002). Computing iceberg concept lattices with titanic. Data Knowledge Engineering, page 189–222.
|
|
13 |
Wille, R. (2001). Why can concept lattices support knowledge discovery in databases? Proceedings of the concept lattices based knowledge discovery in databases workshop, pages 7–20.
|
|