SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Vanessa Braganholo (vanessa@ic.uff.br)
2 Frank da Silva(frankwrs@ic.uff.br)
3 Victor de Almeida(valmeida@ic.uff.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A. and Rasin, A. (2009). HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. Proceedings of the VLDB Endowment (PVLDB), v. 2, n. 1, p. 922–933.
2 Alsubaiee, S., Behm, A., Grover, R., et al. (2012). ASTERIX: Scalable Warehouse-Style Web Data Integration. International Workshop on Information Integration on the Web, p. 1–4.
3 Bittorf, M., Bobrovytsky, T., Erickson, C. C. A. C. J., et al. (2015). Impala: A Modern, Open-Source SQL Engine for Hadoop. In Conference on Innovative Data Systems Research (CIDR).
4 Dageville, B., Cruanes, T., Zukowski, M., et al. (2016). The Snowflake Elastic Data Warehouse. International Conference on Management of Data (SIGMOD), p. 215–226.
5 Das, S., Agrawal, D. and El Abbadi, A. (2013). ElasTraS: An Elastic, Scalable, and Self-Managing Transactional Database for the Cloud. Transactions on Database Systems (TODS), v. 38, n. 1, p. 5.
6 DeWitt, D. and Gray, J. (1992). Parallel Database Systems: The Future of High Performance Database Systems. Communications of the ACM, v. 35, n. 6, p. 85–98.
7 Gupta, A., Agarwal, D., Tan, D., et al. (2015). Amazon Redshift and the Case for Simpler Data Warehouses. In International Conference on Management of Data (SIGMOD).
8 Halperin, D., Teixeira de Almeida, V., Choo, L. L., et al. (2014). Demonstration of the Myria Big Data Management Service. International Conference on Management of Data (SIGMOD), p. 881–884.
9 Hu, X., Tao, Y. and Chung, C.-W. (2013). Massive Graph Triangulation. In SIGMOD.
10 Isard, M., Budiu, M., Yu, Y., Birrell, A. and Fetterly, D. (2007). Dryad: Distributed Data-parallel Programs from Sequential Building Blocks. In European Conference on Computer Systems (EuroSys).
11 Kim, C., Kaldewey, T., Lee, V. W., et al. (2009). Sort vs. Hash Revisited: Fast Join Implementation on Modern Multi-core CPUs. Proceedings of the VLDB Endowment (PVLDB), v. 2, n. 2, p. 1378–1389.
12 Malewicz, G., Austern, M. H., Bik, A. J., et al. (2010). Pregel: A System for Large-scale Graph Processing. In International Conference on Management of Data (SIGMOD).
13 Mehta, M. and DeWitt, D. J. (1997). Data Placement in Shared-nothing Parallel Database Systems. The VLDB Journal, v. 6, n. 1, p. 53–72.
14 Mishra, P. and Eich, M. H. (1992). Join Processing in Relational Databases. ACM Computing Surveys (CSUR), v. 24, n. 1, p. 63–113.
15 Schneider, D. A. and DeWitt, D. J. (1989). A performance Evaluation of Four Parallel Join Algorithms in a Shared-nothing Multiprocessor Environment. International Conference on Management of Data (SIGMOD), v. 18, p. 110–121.
16 Stonebraker, M. (1986). The Case for Shared Nothing. IEEE Database Engineering, v. 9, n. 1, p. 4–9.
17 Wang, J., Baker, T., Balazinska, M., et al. (2017). The Myria Big Data Management and Analytics System and Cloud Service. In Conference on Innovative Data Systems Research (CIDR).
18 Warneke, D. and Kao, O. (2009). Nephele: Efficient Parallel Data Processing in the Cloud. In Many-Task Computing on Grids and Supercomputers (MTAGS).