1 |
Barocas, S., Hardt, M., and Narayanan, A. (2023). Fairness and machine learning: Limitations and opportunities. MIT press.
|
|
2 |
Caton, S. and Haas, C. (2024). Fairness in machine learning: A survey. ACM Computing Surveys, 56(7):1–38.
|
|
3 |
Chaves, I. C., Martins, A. D. F., Praciano, F. D., Brito, F. T., Monteiro, J. M., and Machado, J. C. (2022). Bpa: A multilingual sentiment analysis approach based on bilstm. In ICEIS (1), pages 553–560.
|
|
4 |
Dhar, P., Gleason, J., Roy, A., Castillo, C. D., and Chellappa, R. (2021). Pass: protected attribute suppression system for mitigating bias in face recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15087–15096.
|
|
5 |
Girhepuje, S. (2023). Identifying and examining machine learning biases on adult dataset. arXiv preprint arXiv:2310.09373.
|
|
6 |
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM computing surveys (CSUR), 54(6):1–35.
|
|
7 |
Sena, L. B., Praciano, F. D., Chaves, I. C., Brito, F. T., Neto, E. R. D., Monteiro, J. M., and Machado, J. C. (2022). Audio-mc: A general framework for multi-context audio classification. In ICEIS (1), pages 374–383.
|
|
8 |
Stoyanovich, J., Howe, B., and Jagadish, H. V. (2020). Responsible data management. Proceedings of the VLDB Endowment, 13(12).
|
|
9 |
Zliobait˙e, I. (2017). Measuring discrimination in algorithmic decision making. Data Mining and Knowledge Discovery, 31(4):1060–1089.
|
|