1 |
Baniecki, H., Kretowicz, W., Piatyszek, P., Wisniewski, J., and Biecek, P. dalex: Responsible machine learning with interactive explainability and fairness in python. Journal of Machine Learning Research 22 (214): 1–7, 2021.
|
|
2 |
Carter, S., van Rees, C. B., Hand, B. K., Muhlfeld, C. C., Luikart, G., and Kimball, J. S. Testing a generalizable machine learning workflow for aquatic invasive species on rainbow trout (oncorhynchus mykiss) in northwest montana. Frontiers in Big Data vol. 4, 2021.
|
|
3 |
Doran, D., Schulz, S., and Besold, T. R. What does explainable ai really mean? a new conceptualization of perspectives. In Proceedings of the First International Workshop on Comprehensibility and Explanation in AI and ML, 2017.
|
|
4 |
Elith, J. and Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. The Annual Review of Ecology, Evolution and Systematics vol. 40, pp. 677–697, 2009.
|
|
5 |
Fern, R. R., Morrison, M. L., Grant, W. E., Wang, H., and Campbell, T. A. Modeling the influence of livestock grazing pressure on grassland bird distributions. Ecological Processes 9 (42), 2020.
|
|
6 |
Hegel, T. M., Cushman, A., Evans, J., and Huetmann, F. Current State of the Art for Statistical Modelling of Species Distributions. In , Spatial Complexity, Informatics and Wildlife Conservation. Springer, 2010.
|
|
7 |
Hernandez, P. A., Graham, C. H., Master, L. L., and Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29 (5): 773–785, 2006.
|
|
8 |
Lundberg, S. Shap documentation. https://shap.readthedocs.io/en/latest/, 2018. Acesso em: 03/07/2022.
|
|
9 |
Lundberg, S. M. and Lee, S. A unified approach to interpreting model predictions. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017.
|
|
10 |
Martin, S. T., Artaxo, P., Machado, L., Manzi, A. O., Souza, R. A. F. d., Schumacher, C., Wang, J., Biscaro, T., Brito, J., Calheiros, A., et al. The green ocean amazon experiment (goamazon2014/5) observes pollution affecting gases, aerosols, clouds, and rainfall over the rain forest. Bulletin of the American Meteorological Society 98 (5): 981–997, 2017.
|
|
11 |
Mateo, R. G., Vanderpoorten, A., Muñoz, J., Laenen, B., and Désamoré, A. Modeling species distributions from heterogeneous data for the biogeographic regionalization of the european bryophyte flora. PLoS One 8 (2): e55648, 2013
|
|
12 |
Miyaji, R. O., Almeida, F. V., Bauer, L. O., Ferrari, V., Corrêa, P. L. P., Rizzo, L. V., and Prakash, G. Spatial interpolation of air pollutant and meteorological variables in central amazonia. Data 6 (12), 2021.
|
|
13 |
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asi, R., and Yu, B. Definitions, methods, and applications in interpretable machine learning. In Proceedings of the National Academy of Sciences of the United States of America. pp. 22071–22080, 2019.
|
|
14 |
Nurhussen, A., Atzberger, C., and Zewdia, W. Species distribution modelling performance and its implication for sentinel-2-based prediction of invasive prosopis juliflora in lower awash river basin, ethiopia. Ecological Processes 10 (18), 2021.
|
|
15 |
Phillips, S. J. Maximum entropy modeling of species geographic distribution. Ecological Modelling vol. 190, pp. 231–259, 2005.
|
|
16 |
Phillips, S. J., Dudik, M., and Schapire, R. E. A. Maximum entropy approach to species distribution modelling. In Proceedings of the Twenty-First International Conference on Machine Learning. pp. 655–662, 2004.
|
|
17 |
Pinaya, J. and Corrêa, P. Metodologia para definição das atividades do processo de modelagem de distribuição de espécies. In Anais do V Workshop de Computação Aplicada a Gestão do Meio Ambiente e Recursos Naturais. SBC, Porto Alegre, RS, Brasil, pp. 45–54, 2014.
|
|
18 |
Rademaker, M., Hogeweg, L., and Vos, R. Modelling the niches of wild and domestic ungulate species using deep learning. Biodiversity Information Science and Standards, 2019.
|
|
19 |
Ribeiro, M. T. Local interpretable model-agnostic explanations (lime) documentation. https://lime-ml.readthedocs.io/en/latest/, 2016. Acesso em: 03/07/2022.
|
|
20 |
Ribeiro, M. T., Singh, S., and Guestrin, C. “why should i trust you?” explaining the prediction of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 1135–1144, 2016.
|
|
21 |
Ryo, M., Angelov, B., Mammola, S., Kass, J. M., Benito, B. M., and F, H. Explainable artificial intelligence enhances the ecological interpretability of black-box species distribution models. Ecography vol. 44, pp. 199–205, 2021.
|
|
22 |
Staniak, M. and Biecek, P. Explanations of models predictions with live and breakdown packages. The R Journal 10 (2): 395–409, 2018.
|
|