1 |
Alban, M. and Mauricio, D. Predicting university dropout through data mining: A systematic literature. Indian Journal of Science and Technology 12 (4): 1–12, 2019.
|
|
2 |
Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 2007.
|
|
3 |
Breiman, L. Random forests. Machine Learning vol. 45, pp. 5–32, 2001.
|
|
4 |
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. Classification and Regression Trees. CRC Press, 1984.
|
|
5 |
Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. Choosing multiple parameters for support vector machines. Machine Learning 46 (1-3): 131 – 159, 2002.
|
|
6 |
Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, USA, pp. 785–794, 2016.
|
|
7 |
Fernández-García, A. J., Preciado, J. C., Melchor, F., Rodriguez-Echeverria, R., Conejero, J. M., and Sánchez-Figueroa, F. A real-life machine learning experience for predicting university dropout at different stages using academic data. IEEE Access vol. 9, pp. 133076–133090, 2021.
|
|
8 |
Friedman, J. H. Greedy function approximation: A gradient boosting machine. The Annals of Statistics 29 (5): 1189–1232, 2001.
|
|
9 |
Geurts, P., Ernst, D., and Wehenkel, L. Extremely randomized trees. Machine Learning vol. 63, pp. 3–42, 2006.
|
|
10 |
He, H. and Ma, Y. Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley-IEEE Press, 2013.
|
|
11 |
INEP. Brazilian higher education census. https://www.gov.br/inep/pt-br/areas-de-atuacao/pesquisas-estatisticas-eindicadores/censo-da-educacao-superior, 2022.
|
|
12 |
Ishwaran, H. The effect of splitting on random forests. Machine Learning 99 (1): 75–118, 2015.
|
|
13 |
Romero, C. and Ventura, S. Educational data mining and learning analytics: An updated survey. WIREs Data Mining and Knowledge Discovery 10 (3): e1355, 2020.
|
|
14 |
Santos, C. H. D. C., de L. Martins, S., and Plastino, A. Is it possible to predict dropout based on academic performance only? Brazilian Symposium on Informatics in Education vol. 32, pp. 792–802, 2021.
|
|
15 |
Santos, G. A. S., Bordignon, A. L., Oliveira, S. L. G., Haddad, D. B., Brandão, D. N., and Belloze, K. T. A brief review about educational data mining applied to predict student’s dropout. In Anais da V Escola Regional de Sistemas de Informação do Rio de Janeiro. SBC, Porto Alegre, RS, Brasil, pp. 86–91, 2018.
|
|
16 |
UFPR. Bachelor’s degree in computer science - curricular grade. https://web.inf.ufpr.br/bcc/curriculo/gradecurricular-2011/, 2011.
|
|
17 |
UFPR. Previous entries. https://servicos.nc.ufpr.br, 2022.
|
|
18 |
Zhu, J., Zou, H., Rosset, S., and Hastie, T. Multi-class adaboost. Statistics and Its Interface 2 (3): 349–360, 2009.
|
|