SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Dayane Perez Bravo(dayaneperezbravo@hotmail.com)
2 Marco Antonio Zanata Alves(mazalves@inf.ufpr.br)
3 Leandro Augusto Ensina(leandroa@utfpr.edu.br)
4 Luiz Eduardo Soares Oliveira(lesoliveira@inf.ufpr.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Alban, M. and Mauricio, D. Predicting university dropout through data mining: A systematic literature. Indian Journal of Science and Technology 12 (4): 1–12, 2019.
2 Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 2007.
3 Breiman, L. Random forests. Machine Learning vol. 45, pp. 5–32, 2001.
4 Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. Classification and Regression Trees. CRC Press, 1984.
5 Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. Choosing multiple parameters for support vector machines. Machine Learning 46 (1-3): 131 – 159, 2002.
6 Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, USA, pp. 785–794, 2016.
7 Fernández-García, A. J., Preciado, J. C., Melchor, F., Rodriguez-Echeverria, R., Conejero, J. M., and Sánchez-Figueroa, F. A real-life machine learning experience for predicting university dropout at different stages using academic data. IEEE Access vol. 9, pp. 133076–133090, 2021.
8 Friedman, J. H. Greedy function approximation: A gradient boosting machine. The Annals of Statistics 29 (5): 1189–1232, 2001.
9 Geurts, P., Ernst, D., and Wehenkel, L. Extremely randomized trees. Machine Learning vol. 63, pp. 3–42, 2006.
10 He, H. and Ma, Y. Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley-IEEE Press, 2013.
11 INEP. Brazilian higher education census. https://www.gov.br/inep/pt-br/areas-de-atuacao/pesquisas-estatisticas-eindicadores/censo-da-educacao-superior, 2022.
12 Ishwaran, H. The effect of splitting on random forests. Machine Learning 99 (1): 75–118, 2015.
13 Romero, C. and Ventura, S. Educational data mining and learning analytics: An updated survey. WIREs Data Mining and Knowledge Discovery 10 (3): e1355, 2020.
14 Santos, C. H. D. C., de L. Martins, S., and Plastino, A. Is it possible to predict dropout based on academic performance only? Brazilian Symposium on Informatics in Education vol. 32, pp. 792–802, 2021.
15 Santos, G. A. S., Bordignon, A. L., Oliveira, S. L. G., Haddad, D. B., Brandão, D. N., and Belloze, K. T. A brief review about educational data mining applied to predict student’s dropout. In Anais da V Escola Regional de Sistemas de Informação do Rio de Janeiro. SBC, Porto Alegre, RS, Brasil, pp. 86–91, 2018.
16 UFPR. Bachelor’s degree in computer science - curricular grade. https://web.inf.ufpr.br/bcc/curriculo/gradecurricular-2011/, 2011.
17 UFPR. Previous entries. https://servicos.nc.ufpr.br, 2022.
18 Zhu, J., Zou, H., Rosset, S., and Hastie, T. Multi-class adaboost. Statistics and Its Interface 2 (3): 349–360, 2009.