1 |
Cotton, W. R., Bryan, G. H., and C., V. d. H. S. (2010). Storm and cloud dynamics.Elsevier, 2 edition.
|
|
2 |
Faceli, K., Lorena, A. C., Gama, J., and Carvalho, A. C. P. d. L. F. d. (2011). Inteligencia artificial: uma abordagem de aprendizado de maquina ´ . LTC.
|
|
3 |
Haykin, S. (2001). Redes Neurais - Principios e Praticas . Bookman.
|
|
4 |
Ho, T. K. (1995). Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition.
|
|
5 |
Leinonen, J., Hamann, U., Germann, U., and Mecikalski, J. R. (2022). Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance. Natural Hazards and Earth System Sciences, 22(2):577–597
|
|
6 |
Luxburg, U. v. and Scholkopf, B. (2011). Statistical learning theory: Models, concepts, and results. Handbook of the History of Logic, page 651–706
|
|
7 |
MacQueen, J. B. (1967). Some methods for classification and analysis of Multivariate Observations, volume 1. Defense Technical Information Center.
|
|
8 |
NCAR (1990). Weather research and forecasting model. https://www.mmm.ucar.edu/weather-research-and-forecasting-model. Accessed: 25/05/2020.
|
|
9 |
NOAA/NESDIS (2012). Glm lightning cluster-filter algorithm. https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_GLM_v3.0_Jul2012.pdf. Accessed: 17/06/2018.
|
|
10 |
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., and et al (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.
|
|
11 |
Rakov, V. A. and Uman, M. A. (2003). Lightning: physics and effects. Cambridge University, page 687.
|
|
12 |
Rew, R. K. and Davis, G. P. (1990). NetCDF: An Interface for Scientific Data Access, 10(4):76–82.
|
|
13 |
Sakuragi, J. (2017). Estudo da morfologia das tempestades severas em 3D e potencial aplicac¸ao em Nowcasting ˜ . PhD thesis, Instituto Nacional de Pesquisas Espaciais – INPE.
|
|
14 |
WMO (2017). Guidelines for Nowcasting Techniques. World Meteorological Organiza- tion.
|
|