1 |
Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between sets of items in large databases. In 1993 ACM SIGMOD International Conference on Management of Data, pages 207–216.
|
|
2 |
Amaral, T. and Sousa, E. (2019). Trier: A fast and scalable method for mining temporal exception rules. In XXXIV Simpósio Brasileiro de Banco de Dados, pages 1–12. SBC.
|
|
3 |
Das, G., Lin, K.-I., Mannila, H., Renganathan, G., and Smyth, P. (1998). Rule discovery from time series. In Proceedings of the 4th ACM KDD, KDD’98, pages 16–22.
|
|
4 |
de Oliveira, F., Costa, R., Goldschmidt, R., and Cavalcanti, M. C. (2017). Mineração de regras de associação multirrelação em grafos: Direcionando o processo de busca. In XXXII Simpósio Brasileiro de Banco de Dados, pages 270–275. SBC.
|
|
5 |
Han, J., Pei, J., and Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
|
|
6 |
Harms, S. K. and Deogun, J. S. (2004). Sequential association rule mining with time lags. Journal of Intelligent Information Systems.
|
|
7 |
He, G., Dai, L., Yu, Z., and Chen, C. L. P. (2024). Gan-based temporal association rule mining on multivariate time series data. IEEE Transactions on Knowledge and Data Engineering, 36(10):5168–5180.
|
|
8 |
Ho, V. L., Ho, N., Pedersen, T. B., and Papapetrou, P. (2025). Efficient generalized temporal pattern mining in time series using mutual information. IEEE Transactions on Knowledge and Data Engineering, 37(4):1753–1771.
|
|
9 |
Karasawa, E. and Sousa, E. (2022). Truminer: Mineração de regras temporais em bases de séries multivariadas e heterogêneas. In XXXVII Simpósio Brasileiro de Bancos de Dados, pages 403–408. SBC.
|
|
10 |
Karasawa, E. G. and Sousa, E. P. M. (2023). Mining temporal rules from heterogeneous multivariate time series. Journal of Information and Data Management, 14(2).
|
|
11 |
Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD, DMKD ’03, pages 2–11.
|
|
12 |
Romani, L. A. S., de Avila, A. M. H., Zullo, J., Chbeir, R., Traina, C., and Traina, A. J. M. (2010). Clearminer: a new algorithm for mining association patterns on heterogeneous time series from climate data. In 2010 ACM Symposium on Applied Computing, pages 900–905.
|
|
13 |
Schluter, T. and Conrad, S. (2011). About the analysis of time series with temporal association rule mining. In 2011 IEEE Symposium on Computational Intelligence in Data Mining, pages 325–332.
|
|
14 |
Segura-Delgado, A., Gacto, M. J., Alcalá, R., and Alcalá-Fdez, J. (2020). Temporal association rule mining: An overview considering the time variable as an integral or implied component. WIREs Data Mining and Knowledge Discovery, 10(4):e1367.
|
|
15 |
Srivastava, T., Mullick, I., and Bedi, J. (2024). Association mining based deep learning approach for financial time-series forecasting. Applied Soft Computing, 155:111469.
|
|
16 |
Zhao, Y. and Zhang, T. (2017). Discovery of temporal association rules in multivariate time series. In International Conference on Mathematics, Modelling and Simulation Technologies and Applications, 2017, Xiamen, pages 294–300.
|
|