SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Eliane Karasawa(eligniechk@gmail.com)
2 Elaine Sousa(parros@icmc.usp.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between sets of items in large databases. In 1993 ACM SIGMOD International Conference on Management of Data, pages 207–216.
2 Amaral, T. and Sousa, E. (2019). Trier: A fast and scalable method for mining temporal exception rules. In XXXIV Simpósio Brasileiro de Banco de Dados, pages 1–12. SBC.
3 Das, G., Lin, K.-I., Mannila, H., Renganathan, G., and Smyth, P. (1998). Rule discovery from time series. In Proceedings of the 4th ACM KDD, KDD’98, pages 16–22.
4 de Oliveira, F., Costa, R., Goldschmidt, R., and Cavalcanti, M. C. (2017). Mineração de regras de associação multirrelação em grafos: Direcionando o processo de busca. In XXXII Simpósio Brasileiro de Banco de Dados, pages 270–275. SBC.
5 Han, J., Pei, J., and Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
6 Harms, S. K. and Deogun, J. S. (2004). Sequential association rule mining with time lags. Journal of Intelligent Information Systems.
7 He, G., Dai, L., Yu, Z., and Chen, C. L. P. (2024). Gan-based temporal association rule mining on multivariate time series data. IEEE Transactions on Knowledge and Data Engineering, 36(10):5168–5180.
8 Ho, V. L., Ho, N., Pedersen, T. B., and Papapetrou, P. (2025). Efficient generalized temporal pattern mining in time series using mutual information. IEEE Transactions on Knowledge and Data Engineering, 37(4):1753–1771.
9 Karasawa, E. and Sousa, E. (2022). Truminer: Mineração de regras temporais em bases de séries multivariadas e heterogêneas. In XXXVII Simpósio Brasileiro de Bancos de Dados, pages 403–408. SBC.
10 Karasawa, E. G. and Sousa, E. P. M. (2023). Mining temporal rules from heterogeneous multivariate time series. Journal of Information and Data Management, 14(2).
11 Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD, DMKD ’03, pages 2–11.
12 Romani, L. A. S., de Avila, A. M. H., Zullo, J., Chbeir, R., Traina, C., and Traina, A. J. M. (2010). Clearminer: a new algorithm for mining association patterns on heterogeneous time series from climate data. In 2010 ACM Symposium on Applied Computing, pages 900–905.
13 Schluter, T. and Conrad, S. (2011). About the analysis of time series with temporal association rule mining. In 2011 IEEE Symposium on Computational Intelligence in Data Mining, pages 325–332.
14 Segura-Delgado, A., Gacto, M. J., Alcalá, R., and Alcalá-Fdez, J. (2020). Temporal association rule mining: An overview considering the time variable as an integral or implied component. WIREs Data Mining and Knowledge Discovery, 10(4):e1367.
15 Srivastava, T., Mullick, I., and Bedi, J. (2024). Association mining based deep learning approach for financial time-series forecasting. Applied Soft Computing, 155:111469.
16 Zhao, Y. and Zhang, T. (2017). Discovery of temporal association rules in multivariate time series. In International Conference on Mathematics, Modelling and Simulation Technologies and Applications, 2017, Xiamen, pages 294–300.