1 |
Arrieta, A. B., Díaz-Rodríguez, N., Ser, J. D., Bennetot, A., Tabik, S., Barbado, A., Gar-
cía, S., Gil-López, S., Molina, D., Benjamins, R., et al. (2020). Explainable artificial
intelligence (xai): : Concepts, taxonomies, opportunities and challenges toward re-
sponsible ai. Information Fusion, 58(C).
|
|
2 |
Becker, B. and Kohavi, R. (1996). Adult. UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5XW20.
|
|
3 |
Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura,
J., and Eckersley, P. (2020). Explainable machine learning in deployment. Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency.
|
|
4 |
Borys, K., Schmitt, Y., Nauta, M., Seifert, C., Krämer, N., Friedrich, C., and Nensa, F.
(2023). Explainable ai in medical imaging: An overview for clinical practitioners –
saliency-based xai approaches. European Journal of Radiology, 162.
|
|
5 |
Burton, J., Moubayed, N., and Enshaei, A. (2023). Natural language explanations for
machine learning classification decisions. Proceedings of the 2023 International Joint
Conference on Neural Networks (IJCNN).
|
|
6 |
Caseli, H. and Nunes, M. (2023). Processamento de Linguagem Natural: Conceitos, Téc-
nicas e Aplicações em Português. Brasileiras - Processamento de Linguagem Natural.
|
|
7 |
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining.
|
|
8 |
Chroma (2025). Chroma. Available on: https://www.trychroma.com/. Ac-
cessed in 23 March 2025.
|
|
9 |
Dafali, S. M., Kissi, M., and El Beggar, O. (2023). Comparative study between global
and local explainable models. In 2023 14th International Conference on Intelligent
Systems: Theories and Applications (SITA), pages 1–8.
|
|
10 |
Doran, D., Schulz, S., and Besold, T. R. (2017). What does explainable ai really mean?
a new conceptualization of perspectives. In Proceedings of the First International
Workshop on Comprehensibility and Explanation in AI and ML.
|
|
11 |
Girhepuje, S. (2023). Identifying and examining machine learning biases on adult dataset.
ArXiv.
|
|
12 |
Gu, J., Jiang, X., Shi, Z., Tan, H., Zhai, X., Xu, C., Li, W., Shen, Y., Ma, S., Liu, H.,
Wang, S., Zhang, K., Wang, Z., Gao, W., Ni, L., and Guo, J. (2024). A survey on
llm-as-a-judge. ArXiv.
|
|
13 |
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical
Learning. Springer, Londres.
|
|
14 |
LangGraph (2025). Langgraph. Available on: https://langchain-ai.github.
io/langgraph/tutorials/introduction/. Accessed in 23 March 2025.
|
|
15 |
Lundberg, S. (2018). Benchmark xgboost explanations. Available on: https://shap.
readthedocs.io/en/latest/example_notebooks/benchmarks/
tabular/Benchmark%20XGBoost%20explanations.html. Accessed in
23 March 2025.
|
|
16 |
Lundberg, S. M. and Lee, S. (2017). A unified approach to interpreting model predictions.
Proceedings of the 31st International Conference on Neural Information Processing
Systems.
|
|
17 |
Mindlin, D., Robrecht, A., Morasch, M., and Cimiano, P. (2024). Measuring user under-
standing in dialogue-based xai systems. Proceedings of the 27th European Conference
on Artificial Intelligence.
|
|
18 |
OpenAI (2025a). Gpt-4o mini: advancing cost-efficient intel-
ligence. Available on: https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/. Ac-
cessed in 23 March 2025.
|
|
19 |
OpenAI (2025b). Openai o3-mini. Available on: https://openai.com/index/
openai-o3-mini/. Accessed in 23 March 2025.
|
|
20 |
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "why should i trust you?": Explaining
the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
|
|
21 |
Richmond, K., Muddamsetty, S., Gammeltoft-Hansen, T., Olsen, H., and Moeslund, T.
(2024). Explainable ai and law: An evidential survey. Digital Society, 3(1).
|
|
22 |
Ryo, M., Angelov, B., Mammola, S., Kass, J. M., Benito, B. M., and F, H. (2021). Ex-
plainable artificial intelligence enhances the ecological interpretability of black-box
species distribution models. Ecography, 44:199–205.
|
|
23 |
Sena, L. and Machado, J. (2024). Evaluation of fairness in machine learning models
using the uci adult dataset. In Anais do XXXIX Simpósio Brasileiro de Bancos de
Dados. SBC.
|
|
24 |
Spitzer, P., Celis, S., Martin, D., Kühl, N., and Satzger, G. (2024). Looking through
the deep glasses: How large language models enhance explainability of deep learning
models. Proceedings of Mensch und Computer 2024.
|
|
25 |
Tavily (2025). Tavily. Available on: https://docs.tavily.com/welcome. Ac-
cessed in 23 March 2025.
|
|
26 |
Wang, B., Li, Y., Zhou, J., and Chen, F. (2025). Can llm assist in the evaluation of the
quality of machine learning explanations? ArXiv.
|
|
27 |
Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J., Chen,
X., Lin, Y., Zhao, W., Wei, Z., and Wen, J. (2023). A survey on large language model
based autonomous agents. Frontiers Comput. Sci.
|
|
28 |
Zhu, Y., Yuan, H., Wang, S., Liu, S., Liu, W., Deng, C., Chen, H., Liu, Z., Dou, Z., and
Wen, J. (2024). Large language models for information retrieval: A survey. ArXiv.
|
|
29 |
Zytek, A., Pidò, S., and Veeramachaneni, K. (2024). Llms for xai: Future directions for
explaining explanations. ACM CHI Workshop on Human-Centered Explainable AI.
|
|
30 |
Cerneviˇcien˙e, J. and Kabašinskas, A. (2024). Explainable artificial intelligence (xai) in
finance: a systematic literature review. Artificial Intelligence Review, 57(216).
|
|