1 |
Ain, Q. T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., and Rehman, A. (2017). Sentiment analysis using deep learning techniques: A review. International Journal of Advanced Computer Science and Applications, 8(6).
|
|
2 |
Anderson, B. (2005). Imagined communities. Chap, 4(Hansen 1999):48–60.
|
|
3 |
Bravo-Marquez, F., Frank, E., Mohammad, S. M., and Pfahringer, B. (2016). Determining word-emotion associations from tweets by multilabel classification. In Proc. of the IEEE/WIC/ACM WI, pages 536–539.
|
|
4 |
Burnap, P., Williams, M. L., Sloan, L., Rana, O., Housley, W., Edwards, A., Knight, V., Procter, R., and Voss, A. (2014). Tweeting the terror: modelling the social media reaction to the Woolwich terrorist attack. Social Network Analysis and Mining, 4(1):1–14.
|
|
5 |
De Choudhury, M., Jhaver, S., Sugar, B., and Weber, I. (2016). Social media participation in an activist movement for racial equality. In Proc. of the ICWSM, pages 92–101.
|
|
6 |
Ekman, P. and Friesen, W. (1982). Emotion in the human face system. Cambridge University Press, San Francisco, CA,.
|
|
7 |
ElSherief, M., Belding, E. M., and Nguyen, D. (2017). # notokay: Understanding gender-based violence in social media. In Proc. of the ICWSM, pages 52–61.
|
|
8 |
Fan, H., Cao, Z., Jiang, Y., Yin, Q., and Doudou, C. (2014). Learning deep face representation. CoRR.
|
|
9 |
Gallegos, L., Lerman, K., Huang, A., and Garcia, D. (2015). Geography of emotion: Where in a city are people happier? In Proc. of the WWW, pages 569–574.
|
|
10 |
Go, A., Bhayani, R., and Huang, L. (2009). Twitter Sentiment Classification using Distant Supervision. Processing, 150(12):1–6.
|
|
11 |
Hasan, M., Rundensteiner, E., and Agu, E. (2014). EMOTEX: Detecting Emotions in Twitter Messages. ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, pages 27–31.
|
|
12 |
Horgan, J. (2014). The Psychology of Terrorism, Second Edition. Taylor & Francis Group. 2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil 107
|
|
13 |
Kim, S., Bak, J., Jo, Y., and Oh, A. (2011). Do You Feel What I Feel ? Social Aspects of Emotions in Twitter Conversations. NIPS Workshop, pages 495–498.
|
|
14 |
Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proc. of EMNLP, pages 1746–1751.
|
|
15 |
Lerman, K., Arora, M., Gallegos, L., Kumaraguru, P., and Garcia, D. (2016). Emotions, demographics and sociability in twitter interactions. In Proc. of the ICWSM, pages 201–210.
|
|
16 |
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1):1–167.
|
|
17 |
Lotan, G., Graeff, E., Ananny, M., Gaffney, D., Pearce, I., and danah boyd (2011). The arab spring— the revolutions were tweeted: Information flows during the 2011 tunisian and egyptian revolutions. International Journal of Communication, 5(0).
|
|
18 |
Mitchell, L., Frank, M. R., Harris, K. D., Dodds, P. S., and Danforth, C. M. (2013). The geography of happiness: Connecting twitter sentiment and expression, demographics, and objective characteristics of place. PLOS ONE, 8(5):1– 15.
|
|
19 |
Mohammad, S. (2012). #Emotional Tweets. In Proc. of the First Conference on Lexical and Computational Semantics, pages 246–255.
|
|
20 |
Mohammad, S. M. and Turney, P. D. (2013). Crowdsourcing a word-emotion association lexicon. 29(3):436–465.
|
|
21 |
Mohammad, S. M., Zhu, X., Kiritchenko, S., and Martin, J. (2015). Sentiment, emotion, purpose, and style in electoral tweets. 51(4):480–499.
|
|
22 |
Munezero, M. D., Montero, C. S., Sutinen, E., and Pajunen, J. (2014). Are they different? affect, feeling, emotion, sentiment, and opinion detection in text. IEEE Transactions on Affective Computing, 5(2):101–111.
|
|
23 |
Purver, M. and Battersby, S. (2012). Experimenting with Distant Supervision for Emotion Classification. Proc. of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 482–491.
|
|
24 |
Sakaki, T., Okazaki, M., and Matsuo, Y. (2010). Earthquake shakes twitter users: Real-time event detection by social sensors. In Proc. of the 19th International Conference on World Wide Web, pages 851–860.
|
|
25 |
Suttles, J. and Ide, N. (2013). Distant supervision for emotion classification with discrete binary values. In Gelbukh, A., editor, Computational Linguistics and Intelligent Text Processing, pages 121–136, Berlin, Heidelberg. Springer Berlin Heidelberg.
|
|
26 |
Wan, S. and Paris, C. (2015). Understanding Public Emotional Reactions on Twitter. Proc. of ICWSM, pages 715–716.
|
|
27 |
Wang, W., Chen, L., Thirunarayan, K., and Sheth, A. P. (2012). Harnessing twitter ”big data” for automatic emotion identification. In 2012 International Conference on Privacy, Security, Risk and Trust, pages 587–592.
|
|