1 |
Blanco, G., Traina, A. J. M., Traina, C., Azevedo-Marques, P. M., Jorge, A. E. S., de Oliveira, D., Bedo, M. V. N. (2020). A superpixel-driven deep learning approach for the analysis of dermatological wounds. Computer Methods and Programs in Biomedicine, 183:105079.
|
|
2 |
Borges, G. C., dos Reis, J. C., and Medeiros, C. B. (2021). Addressing search in scientific open data repositories: A semantic metasearch platform. In BreSci, pages 81–88. SBC.
|
|
3 |
Crosas, M. (2011). The dataverse network®: An open-source application for sharing, discovering and preserving data. DLib Mag., 17(1/2).
|
|
4 |
Dalgali, A. and Crowston, K. (2019). Sharing open deep learning models. In Proceedings of the 52nd Hawaii International Conference on System Sciences.
|
|
5 |
Demchenko, Y., Zhao. Z., Grosso, P., Wibisono, A., de Laat, C. (2012). Addressing big data challenges for scientific data infrastructure. In CloudCom’12, pages 614–617. IEEE.
|
|
6 |
Flemisch, B., Hermann, S., Herschel, M., Pflüger, D., Pleiss, J., Range, J., Roy, S., Takamoto, M., Uekermann, B. (2024). Research data management in simulation science: Infrastructure, tools, and applications. Datenbank-Spektrum, 24(2):97–105.
|
|
7 |
Herschel, M., Diestelkamper, R., and Ben Lahmar, H. (2017). A survey on provenance: What for? what form? what from? VLDB J., 26(6):881–906.
|
|
8 |
Kocak, B., Yardimci, A. H., Yuzkan, S., Keles, A., Altun, O., Bulut, E., Bayrak, O. N., Okumus, A. A. (2023). Transparency in artificial intelligence research: a systematic review of availability items related to open science in radiology and nuclear medicine. Academic Radiology, 30(10):2254–2266.
|
|
9 |
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In NeurIPS, pages 1097–1105.
|
|
10 |
Li, Z., Mao, F., and Wu, C. (2022). Can we share models if sharing data is not an option? Patterns, 3(11).
|
|
11 |
Moreau, L. and Groth, P. (2013). Provenance: an introduction to prov. Synthesis Lectures on the Semantic Web: Theory and Technology, 3(4):1–129.
|
|
12 |
Nilsback, M.-E. and Zisserman, A. (2006). A visual vocabulary for flower classification. In CVPR’06, volume 2, pages 1447–1454. IEEE.
|
|
13 |
Pina, D. Chapman, A., Kunstmann, L., de Oliveira, D., Mattoso, M. (2024). Dlprov: A data-centric support for deep learning workflow analyses. In DEEM’24, DEEM ’24, page 77–85, New York, NY, USA. ACM.
|
|
14 |
Pina, D., Kunstmann, L., Chapman, A., de Oliveira, D., & Mattoso, M. (2025). Dlprov: a suite of provenance services for deep learning workflow analyses. PeerJ Comp. Sci., 11:e2985.
|
|
15 |
Ravi, N., Chaturvedi, P., Huerta, E. A., Liu, Z., Chard, R., Scourtas, A., Schmidt, K. J., Chard, K., Blaiszik, B., Foster, I. (2022). Fair principles for ai models with a practical application for accelerated
high energy diffraction microscopy. Scientific Data, 9(1):657.
|
|
16 |
Schackart III, K. E., Imker, H. J., and Cook, C. E. (2024). Detailed implementation of a reproducible machine learning-enabled workflow. Data Science Journal.
|
|
17 |
Schlegel, M. and Sattler, K.-U. (2023). Mlflow2prov: Extracting provenance from machine learning experiments. DEEM ’23, New York, NY, USA. ACM.
|
|
18 |
Waskita, A. A., Akbar, Z., Saleh, D. R., Kartika, Y. A., Indrawati, A. (2023). Open science progress: A literature assessment of open access articles. In IC3INA’22, page 271–275, New York, NY, USA. ACM.
|
|
19 |
Wilkinson, M. D. o. (2016). The fair guiding principles for scientific data management and stewardship. Scientific data, 3(1):1–9.
|
|