SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Gabriel Felix(gabriel.felix@lsbd.ufc.br)
2 Francisco Pereira(lucas.falcao@lsbd.ufc.br)
3 Francisco Praciano(daniel.praciano@lsbd.ufc.br)
4 João Gomes(joao.pordeus@lsbd.ufc.br)
5 Javam Machado(javam.machado@lsbd.ufc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Backblaze. Hard drive data and stats. https://www.backblaze.com/b2/hard-drive-test-data.html, 2023. Accessed: 2023-02-13.
2 Cahyadi and Forshaw, M. Hard disk failure prediction on highly imbalanced data using lstm network. In 2021 IEEE International Conference on Big Data (Big Data). pp. 3985–3991, 2021.
3 Chaves, I. C., de Paula, M. R. P., Leite, L. G., Queiroz, L. P., Gomes, J. P. P., and Machado, J. C. Banhfap: A bayesian network based failure prediction approach for hard disk drives. In Intelligent Systems (BRACIS), 2016 5th Brazilian Conference on. IEEE, pp. 427–432, 2016.
4 Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation 9 (8): 1735–1780, 1997.
5 Hu, L., Han, L., Xu, Z., Jiang, T., and Qi, H. A disk failure prediction method based on lstm network due to its individual specificity. Procedia Computer Science vol. 176, pp. 791–799, 2020. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 24th International Conference KES2020.
6 Lima, F. D. S., Pereira, F. L. F., Chaves, I. C., Gomes, J. P. P., and Machado, J. C. Evaluation of recurrent neural networks for hard disk drives failure prediction. In 2018 7th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, pp. 85–90, 2018.
7 Lima, F. D. S., Pereira, F. L. F., Chaves, I. C., Machado, J. C., and Gomes, J. P. P. Predicting the health degree of hard disk drives with asymmetric and ordinal deep neural models. IEEE Transactions on Computers 70 (2): 188–198, 2021.
8 Murray, J. F., Hughes, G. F., and Kreutz-Delgado, K. Machine learning methods for predicting failures in hard drives: A multiple-instance application. J. Mach. Learn. Res. vol. 6, pp. 783–816, 2005.
9 Olah, C. Understanding lstm networks, 2015. [Online; accessed 2017-04-26].
10 Ottem, E. and Plummer, J. Playing it smart: The emergence of reliability prediction technology. Tech. rep., Technical report, Seagate Technology Paper, 1995.
11 Pereira, F. L. F., Bucar, R. C. B., Brito, F. T., Gomes, J. a. P. P., and Machado, J. C. Predicting failures in hdds with deep nn and irregularly-sampled data. In Intelligent Systems: 11th Brazilian Conference, BRACIS 2022, Campinas, Brazil, November 28 – December 1, 2022, Proceedings, Part II. Springer-Verlag, Berlin, Heidelberg, pp. 196–209, 2022.
12 Pinheiro, E., Weber, W.-D., and Barroso, L. A. Failure trends in a large disk drive population. In 5th USENIX Conference on File and Storage Technologies (FAST 07). USENIX Association, San Jose, CA, 2007.