1 |
Attard, J., Orlandi, F., Scerri, S., and Auer, S. (2015). A systematic review of open
government data initiatives. Government information quarterly, 32(4):399–418.
|
|
2 |
Costa, L. L. et al. (2022). Alertas de fraude em licitações: Uma abordagem baseada em redes sociais. In BraSNAM, pages 37–48, Porto Alegre, Brasil. SBC.
|
|
3 |
Cuturi, M. and Blondel, M. (2017). Soft-dtw: a differentiable loss function for timeseries. In ICML, pages 894–903. PMLR.
|
|
4 |
Lima, M. et al. (2020). Inferring about fraudulent collusion risk on Brazilian public works
contracts in official texts using a Bi-LSTM approach. In EMNLP, pages 1580–1588,
Online. Association for Computational Linguistics.
|
|
5 |
Lyra, M. S. et al. (2021). Characterization of the firm–firm public procurement co-bidding
network from the State of Ceará (Brazil) municipalities. Appl. Network Sci., 6(1):1–10.
|
|
6 |
Oliveira, E. F. and Silveira, M. S. (2018). Open Government Data in Brazil a Systematic
Review of Its Uses and Issues. In dg.o, dg.o ’18, New York, NY, USA. ACM.
|
|
7 |
Oliveira, G. P. et al. (2022). Ferramentas open-source de qualidade de dados para licitações públicas: Uma análise comparativa. In SBBD, pages 116–127. SBC.
|
|
8 |
Paula, E. L. et al. (2016). Deep learning anomaly detection as support fraud investigation
in brazilian exports and anti-money laundering. In ICMLA, pages 954–960. IEEE.
|
|
9 |
Silva, M. O. et al. (2022). LiPSet: Um conjunto de Dados com Documentos Rotulados
de Licitações Publicas. In SBBD DSW, pages 13–24. SBC.
|
|
10 |
Velasco, R. B. et al. (2021). A decision support system for fraud detection in public
procurement. International Transactions in Operational Research, 28(1):27–47.
|
|