1 |
Bostrom, K. and Durrett, G. (2020). Byte pair encoding is suboptimal for language model pretraining. arXiv preprint arXiv:2004.03720.
|
|
2 |
Cavalcanti, H. and Campelo, C. (2024). Dataset of brazilian federal senate session transcriptions from 2023 with relevant topics and stance detection annotations.
|
|
3 |
dos Santos, M. A. (2024). Modelagem de tópicos na estimativa de pontos ideais baseados em discursos de parlamentares.
|
|
4 |
Jiang, H., Wu, Q., Luo, X., Li, D., Lin, C.-Y., Yang, Y., and Qiu, L. (2023). Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt compression. arXiv preprint arXiv:2310.06839.
|
|
5 |
Pojoni, M.-L., Dumani, L., and Schenkel, R. (2023). Argument-mining from podcasts using chatgpt. In In procs. of the Workshops at International Conference on Case-Based Reasoning (ICCBR-WS 2023) co-located with the 31st International Conference on Case-Based Reasoning (ICCBR 2023), Aberdeen, Scotland, UK, volume 3438, pages 129–144.
|
|
6 |
Reuver, M., Verberne, S., and Fokkens, A. (2024). Investigating the robustness of modelling decisions for few-shot cross-topic stance detection: A preregistered study.
|
|
7 |
Santos, P. D. and Goya, D. H. (2021). Automatic twitter stance detection on politically controversial issues: A study on covid-19’s cpi. In Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional, pages 524–535. SBC.
|
|
8 |
Ilker Gul, Lebret, R., and Aberer, K. (2024). Stance detection on social media with finetuned large language models.
|
|