1 |
Brazil (2018). Lei Geral de Protec¸ao de Dados Pessoais. ˜ http://www.planalto. gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.htm. Online;
accessed 15 May 2023
|
|
2 |
Brito, F. T. (2023). Differentially private release of count-weighted graphs. PhD thesis, Universidade Federal do Ceara
|
|
3 |
Brito, F. T., Farias, V. A., Flynn, C., Majumdar, S., Machado, J. C., and Srivastava, D. (2023). Global and local differentially private release of count-weighted graphs. Proceedings of the ACM on Management of Data, 1(2):1–25.
|
|
4 |
Brito, F. T. and Machado, J. C. (2017). Preservação de privacidade de dados: Fundamentos, técnicas e aplicações. Jornadas de atualização em informática , pages 91–130.
|
|
5 |
Brito, F. T., Mendonc¸a, A. L. C., and Machado, J. C. (2024). A differentially private
guide for graph analytics. In Proceedings 27th International Conference on Extending
Database Technology, EDBT 2024, Paestum, Italy, pages 850–853.
|
|
6 |
Camacho, D., Panizo-LLedot, A., Bello-Orgaz, G., Gonzalez-Pardo, A., and Cambria,
E. (2020). The four dimensions of social network analysis: An overview of research
methods, applications, and software tools. Information Fusion, 63:88–120.
|
|
7 |
Chen, L., Han, K., Xiu, Q., and Gao, D. (2022). Graph clustering under weightdifferential privacy. In 2022 IEEE 24th Int Conf on High Performance Computing
& Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart
City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pages 1457–1464. IEEE
|
|
8 |
Cormode, G., Procopiuc, C., Srivastava, D., and Tran, T. T. (2012). Differentially private
summaries for sparse data. In Proceedings of the 15th International Conference on
Database Theory, pages 299–311.
|
|
9 |
Duffield, N., Lund, C., and Thorup, M. (2007). Priority sampling for estimation of arbitrary subset sums. Journal of the ACM (JACM), 54(6):32–es.
|
|
10 |
Dwork, C. (2006). Differential privacy. In International Colloquium on Automata, Languages, and Programming, pages 1–12. Springer
|
|
11 |
European Union (2016). Regulation (eu) 2016/679 of the european parliament and of the
council. https://eur-lex.europa.eu/eli/reg/2016/679/oj. General
Data Protection Regulation (GDPR).
|
|
12 |
Fan, C. and Li, P. (2022). Distances release with differential privacy in tree and grid
graph. In 2022 IEEE International Symposium on Information Theory (ISIT), pages
2190–2195. IEEE.
|
|
13 |
Farias, V. A., Brito, F. T., Flynn, C., Machado, J. C., Majumdar, S., and Srivastava, D.
(2020). Local dampening: differential privacy for non-numeric queries via local sensitivity. Proceedings of the VLDB Endowment, 14(4):521–533.
|
|
14 |
Farias, V. A., Brito, F. T., Flynn, C., Machado, J. C., Majumdar, S., and Srivastava, D.
(2023). Local dampening: Differential privacy for non-numeric queries via local sensitivity. The VLDB Journal, pages 1–24.
|
|
15 |
Federal Communications Commission (2018). Customer privacy. https://www.
fcc.gov/general/customer-privacy. Online; accessed 13 October 2022
|
|
16 |
Ferrara, E., Varol, O., Menczer, F., and Flammini, A. (2016). Detection of promoted
social media campaigns. In Proceedings of the International AAAI Conference on Web
and Social Media, volume 10, pages 563–566
|
|
17 |
Ghosh, A., Roughgarden, T., and Sundararajan, M. (2012). Universally utilitymaximizing privacy mechanisms. SIAM Journal on Computing, 41(6):1673–1693.
|
|
18 |
Hardt, M. and Roth, A. (2012). Beating randomized response on incoherent matrices.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 1255–1268.
|
|
19 |
Hay, M., Li, C., Miklau, G., and Jensen, D. (2009). Accurate estimation of the degree
distribution of private networks. In 2009 Ninth IEEE International Conference on Data
Mining, pages 169–178. IEEE.
|
|
20 |
Kasiviswanathan, S. P., Nissim, K., Raskhodnikova, S., and Smith, A. (2013). Analyzing
graphs with node differential privacy. In Theory of Cryptography Conference, pages
457–476. Springer.
|
|
21 |
Le Ny, J. and Pappas, G. J. (2013). Privacy-preserving release of aggregate dynamic
models. In Proceedings of the 2nd ACM international conference on High confidence
networked systems, pages 49–56.
|
|
22 |
Leal, B. C., Vidal, I. C., Brito, F. T., Nobre, J. S., and Machado, J. C. (2018). -doca:
Achieving privacy in data streams. In International Workshop on Data Privacy Management, pages 279–295. Springer.
|
|
23 |
Leskovec, J., Adamic, L. A., and Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web (TWEB), 1(1):5–es.
|
|
24 |
Li, X., Yang, J., Sun, Z., and Zhang, J. (2017). Differential privacy for edge weights in
social networks. Security and Communication Networks, 2017.
|
|
25 |
Manr´ıquez, R., Guerrero-Nancuante, C., Mart´ınez, F., and Taramasco, C. (2021). Spread
of epidemic disease on edge-weighted graphs from a database: A case study of covid19. International Journal of Environmental Research and Public Health, 18(9):4432.
|
|
26 |
Matsumoto, H., Yoshida, S., and Muneyasu, M. (2021). Propagation-based fake news
detection using graph neural networks with transformer. In 2021 IEEE 10th Global
Conference on Consumer Electronics (GCCE), pages 19–20. IEEE.
|
|
27 |
McSherry, F. and Talwar, K. (2007). Mechanism design via differential privacy. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 94–
103. IEEE.
|
|
28 |
Mendonça, A. L., Brito, F. T., Linhares, L. S., and Machado, J. C. (2017). Dipcoding: a
differentially private approach for correlated data with clustering. In Proceedings of the
21st International Database Engineering & Applications Symposium, pages 291–297.
|
|
29 |
Mendonça, A. L., Brito, F. T., and Machado, J. C. (2023). Privacy-preserving techniques
for social network analysis. In Anais Estendidos do XXXVIII Simposio Brasileiro de ´
Bancos de Dados, pages 174–178. SBC.
|
|
30 |
Mendonça, A. L., Brito, F. T., and Machado, J. C. (2024). Analise de dados privada em ´
redes sociais. Jornadas de atualizac¸ao em inform ˜ atica ´ .
|
|
31 |
Monteiro, F. C., Brito, F. T., Chaves, I. C., and Machado, J. C. (2023). Compartilhamento
de dados de trafego de rede utilizando privacidade diferencial. In ´ Anais do L Seminario ´
Integrado de Software e Hardware, pages 296–307. SBC.
|
|
32 |
Neto, E. R., Mendonc¸a, A. L., Brito, F. T., and Machado, J. C. (2018). Privlbs: uma abordagem para preservac¸ao de privacidade de dados em servic¸os baseados em localizac¸ ˜ ao. ˜
In Anais do XXXIII Simposio Brasileiro de Banco de Dados ´ , pages 109–120. SBC.
|
|
33 |
Newman, M. E. (2003). The structure and function of complex networks. SIAM review,
45(2):167–256
|
|
34 |
Pinot, R., Morvan, A., Yger, F., Gouy-Pailler, C., and Atif, J. (2018). Graph-based clustering under differential privacy. arXiv preprint arXiv:1803.03831.
|
|
35 |
Sealfon, A. (2016). Shortest paths and distances with differential privacy. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 29–41.
|
|
36 |
Silva, R. R. C., Leal, B. C., Brito, F. T., Vidal, V. M., and Machado, J. C. (2017). A
differentially private approach for querying rdf data of social networks. In Proceedings
of the 21st International Database Engineering & Applications Symposium, pages 74–
81.
|
|
37 |
Varol, O., Ferrara, E., Menczer, F., and Flammini, A. (2017). Early detection of promoted
campaigns on social media. EPJ data science, 6:1–19.
|
|
38 |
Wang, D. and Long, S. (2019). Boosting the accuracy of differentially private in weighted
social networks. Multimedia Tools and Applications, 78(24):34801–34817.
|
|