1 |
Berndsen, J., Lawlor, A., and Smyth, B. (2017). Running with recommendation. In CEUR
Workshop Proceedings, volume 1953, pages 18 – 21.
|
|
2 |
Corbett, D., Sweeting, A., and Robertson, S. (2019). A change point approach to analy-
sing the match activity profiles of team-sport athletes. Journal of Sports Sciences, 37.
|
|
3 |
El-Kassabi, H. T., Khalil, K., and Serhani, M. A. (2020). Deep learning approach for fore-
casting athletes’ performance in sports tournaments. In ACM International Conference
Proceeding Series, pages 203 – 208.
|
|
4 |
Ely, M. R., Martin, D. E., Cheuvront, S. N., and Montain, S. J. (2008). Effect of ambient
temperature on marathon pacing is dependent on runner ability. MSSE, 40(9):1675 –
1680.
|
|
5 |
Gómez-Molina, J., Ogueta-Alday, A., Camara, J., Stickley, C., Rodríguez-Marroyo, J. A.,
and García-López, J. (2017). Predictive variables of half-marathon performance for
male runners. Journal of Sports Science and Medicine, 16(2):187 – 194.
|
|
6 |
Hespanhol Junior, L., Pillay, J., and van Mechelen, W. (2015). Meta-analyses of the
effects of habitual running on indices of health in physically inactive adults. Sports
Medicine, 45:1455–1468.
|
|
7 |
Komitova, R., Raabe, D., Rein, R., and Memmert, D. (2022). Time Series Data Mining
for Sport Data: a Review. IJCSS, 21(2):17 – 31.
|
|
8 |
Mo, S. and Chow, D. H. (2019). Reliability of the fluctuations within the stride time series
measured in runners during treadmill running to exhaustion. Gait and P., 74:1 – 6.
|
|
9 |
Parra-Camacho, D., González-Serrano, M. H., González-García, R. J., and Calabuig Mo-
reno, F. (2019). Sporting habits of urban runners: Classification according to their mo-
tivation. International Journal of Environmental Research and Public Health, 16(24).
|
|
10 |
Salles, R., Escobar, L., Baroni, L., Zorrilla, R., Ziviani, A., Kreischer, V., Delicato, F.,
Pires, P. F., Maia, L., Coutinho, R., Assis, L., and Ogasawara, E. (2020). Harbinger:
Um framework para integração e análise de métodos de detecção de eventos em séries
temporais. In Anais do Simpósio Brasileiro de Banco de Dados, pages 73–84. SBC.
|
|
11 |
Smyth, B., Lawlor, A., Berndsen, J., and Feely, C. (2022). Recommendations for ma-
rathon runners: on the application of recommender systems and machine learning to
support recreational marathon runners. User Modeling and User-Adapted Interaction,
32(5):787 – 838.
|
|
12 |
Takeuchi, J. and Yamanishi, K. (2006). A unifying framework for detecting outliers and
change points from time series. IEEE Transactions on Knowledge and Data Enginee-
ring, 18(4):482–492.
|
|
13 |
Teune, B., Woods, C., Sweeting, A., Inness, M., and Robertson, S. (2022). A method to
inform team sport training activity duration with change point analysis. PLOS ONE,
17(3):1–11.
|
|
14 |
Thuany, M., Vieira, D., Villiger, E., Gomes, T. N., Weiss, K., Nikolaidis, P. T., Sousa,
C. V., Scheer, V., and Knechtle, B. (2023). An analysis of the São Silvestre race
between 2007–2021: An increase in participation but a decrease in performance.
SMHS, 5(4):277 – 282.
|
|
15 |
Van den Berghe, P., Gosseries, M., Gerlo, J., Lenoir, M., Leman, M., and De Clercq,
D. (2020). Change-point detection of peak tibial acceleration in overground running
retraining. Sensors, 20(6).
|
|
16 |
Yong, W., Lingyun, P., and Jia, W. (2020). Statistical analysis and ARMA modeling for
the big data of marathon score. Science and Sports, 35(6):375 – 385.
|
|