SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Nathália Tito(nathaliactito@gmail.com)
2 Balthazar Paixão(balthazarpaixao@gmail.com)
3 Lucas Tavares(lucas.giusti@aluno.cefet-rj.br)
4 Eduardo Ogasawara(eogasawara@ieee.org)
5 Glauco Amorim(glauco.amorim@eic.cefet-rj.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Berndsen, J., Lawlor, A., and Smyth, B. (2017). Running with recommendation. In CEUR Workshop Proceedings, volume 1953, pages 18 – 21.
2 Corbett, D., Sweeting, A., and Robertson, S. (2019). A change point approach to analy- sing the match activity profiles of team-sport athletes. Journal of Sports Sciences, 37.
3 El-Kassabi, H. T., Khalil, K., and Serhani, M. A. (2020). Deep learning approach for fore- casting athletes’ performance in sports tournaments. In ACM International Conference Proceeding Series, pages 203 – 208.
4 Ely, M. R., Martin, D. E., Cheuvront, S. N., and Montain, S. J. (2008). Effect of ambient temperature on marathon pacing is dependent on runner ability. MSSE, 40(9):1675 – 1680.
5 Gómez-Molina, J., Ogueta-Alday, A., Camara, J., Stickley, C., Rodríguez-Marroyo, J. A., and García-López, J. (2017). Predictive variables of half-marathon performance for male runners. Journal of Sports Science and Medicine, 16(2):187 – 194.
6 Hespanhol Junior, L., Pillay, J., and van Mechelen, W. (2015). Meta-analyses of the effects of habitual running on indices of health in physically inactive adults. Sports Medicine, 45:1455–1468.
7 Komitova, R., Raabe, D., Rein, R., and Memmert, D. (2022). Time Series Data Mining for Sport Data: a Review. IJCSS, 21(2):17 – 31.
8 Mo, S. and Chow, D. H. (2019). Reliability of the fluctuations within the stride time series measured in runners during treadmill running to exhaustion. Gait and P., 74:1 – 6.
9 Parra-Camacho, D., González-Serrano, M. H., González-García, R. J., and Calabuig Mo- reno, F. (2019). Sporting habits of urban runners: Classification according to their mo- tivation. International Journal of Environmental Research and Public Health, 16(24).
10 Salles, R., Escobar, L., Baroni, L., Zorrilla, R., Ziviani, A., Kreischer, V., Delicato, F., Pires, P. F., Maia, L., Coutinho, R., Assis, L., and Ogasawara, E. (2020). Harbinger: Um framework para integração e análise de métodos de detecção de eventos em séries temporais. In Anais do Simpósio Brasileiro de Banco de Dados, pages 73–84. SBC.
11 Smyth, B., Lawlor, A., Berndsen, J., and Feely, C. (2022). Recommendations for ma- rathon runners: on the application of recommender systems and machine learning to support recreational marathon runners. User Modeling and User-Adapted Interaction, 32(5):787 – 838.
12 Takeuchi, J. and Yamanishi, K. (2006). A unifying framework for detecting outliers and change points from time series. IEEE Transactions on Knowledge and Data Enginee- ring, 18(4):482–492.
13 Teune, B., Woods, C., Sweeting, A., Inness, M., and Robertson, S. (2022). A method to inform team sport training activity duration with change point analysis. PLOS ONE, 17(3):1–11.
14 Thuany, M., Vieira, D., Villiger, E., Gomes, T. N., Weiss, K., Nikolaidis, P. T., Sousa, C. V., Scheer, V., and Knechtle, B. (2023). An analysis of the São Silvestre race between 2007–2021: An increase in participation but a decrease in performance. SMHS, 5(4):277 – 282.
15 Van den Berghe, P., Gosseries, M., Gerlo, J., Lenoir, M., Leman, M., and De Clercq, D. (2020). Change-point detection of peak tibial acceleration in overground running retraining. Sensors, 20(6).
16 Yong, W., Lingyun, P., and Jia, W. (2020). Statistical analysis and ARMA modeling for the big data of marathon score. Science and Sports, 35(6):375 – 385.