SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Cláudio Ribeiro(claudiovr@id.uff.br)
2 Marcos Bedo(marcosbedo@id.uff.br)
3 Ronaldo Mello(r.mello@ufsc.br)
4 Aline Paes(alinepaes@ic.uff.br)
5 Daniel de Oliveira(danielcmo@ic.uff.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Dobrkovic, A. et al. (2015). Using machine learning for unsupervised maritime waypoint discovery from streaming ais data. In Proc. of i-KNOW ’15, pages 1–8.
2 Dobrkovic, A. et al. (2018). Maritime pattern extraction and route reconstruction from incomplete ais data. IJDSA, 5(2-3):111–136.
3 EMSA (2019). Annual overview of marine casualties and incidents. Technical report.
4 Fu, P., Wang, H., Liu, K., Hu, X., and Zhang, H. (2017). Finding abnormal vessel trajectories using feature learning. IEEE Access, 5:7898–7909.
5 Kowalska, K. and Peel, L. (2012). Maritime anomaly detection using gaussian process active learning. In 2012 FUSION, pages 1164–1171. IEEE.
6 Laxhammar, R. and Falkman, G. (2010). Conformal prediction for distribution-independent anomaly detection in streaming vessel data. In Proc. of StreamKDD ’10, pages 47–55.
7 Lei, P.-R. (2016). A framework for anomaly detection in maritime trajectory behavior. Knowledge and Information Systems, 47(1):189–214.
8 Liu, B. et al. (2015). Ship movement anomaly detection using specialized distance measures. In 2015 FUSION, pages 1113–1120. IEEE.
9 Mantecón, T. et al. (2019). Deep learning to enhance maritime situation awareness. In 2019 IRS, pages 1–8. IEEE.
10 Mazzarella, F. et al. (2014). Discovering vessel activities at sea using ais data: Mapping of fishing footprints. In 17th FUSION, pages 1–7. IEEE.
11 Nguyen, D. et al. (2018). A multi-task deep learning architecture for maritime surveillance using ais data streams. In 2018 IEEE DSAA, pages 331–340. IEEE
12 Nishizaki, C. et al. (2018). Development of navigation support system to predict new course of ship. In 2018 WAC, pages 1–5. IEEE
13 Osekowska, E., Axelsson, S., and Carlsson, B. (2013). Potential fields in maritime anomaly detection. In Proceedings of the 3rd international conference on models and technologies for intelligent transport systems. TUD Press
14 Pallotta, G., Vespe, M., and Bryan, K. (2013a). Traffic knowledge discovery from ais data. In Proceedings of the 16th International Conference on Information Fusion, pages 1996–2003. IEEE
15 Pallotta, G., Vespe, M., and Bryan, K. (2013b). Vessel pattern knowledge discovery from ais data: A framework for anomaly detection and route prediction. Entropy, 15(6):2218–2245.
16 Pallotta, G. a. (2014). Context-enhanced vessel prediction based on ornstein-uhlenbeck processes using historical ais traffic patterns: Real-world experimental results. In 17th FUSION, pages 1–7. IEEE
17 Radon, A. N., Wang, K., Glässer, U., Wehn, H., and Westwell-Roper, A. (2015). Contextual verification for false alarm reduction in maritime anomaly detection. In 2015 IEEE International Conference on Big Data (Big Data), pages 1123–1133. IEEE
18 Ribeiro, C. V., Paes, A., and de Oliveira, D. (2023). Ais-based maritime anomaly traffic detection: A review. Expert Systems with Applications, page 120561
19 Riveiro, M. et al. (2018). Maritime anomaly detection: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(5):e1266
20 Riveiro, M. and Falkman, G. (2009). Interactive visualization of normal behavioral models and expert rules for maritime anomaly detection. In CGIV ’09, pages 459–466. IEEE
21 Sidibé, A. and Shu, G. (2017). Study of automatic anomalous behaviour detection techniques for maritime vessels. The journal of Navigation, 70(4):847–858.
22 Silveira, P. et al. (2013). Use of ais data to characterise marine traffic patterns and ship collision risk off the coast of Portugal. The Journal of Navigation, 66(6):879–898
23 Smith, M. et al. (2012). Online maritime abnormality detection using gaussian processes and extreme value theory. In 2012 ICDM, pages 645–654. IEEE
24 Soleimani, B. H. et al. (2015). Anomaly detection in maritime data based on geometrical analysis of trajectories. In 2015 FUSION, pages 1100–1105. IEEE
25 Spaccapietra, S. et al. (2008). A conceptual view on trajectories. Data & knowledge engineering, 65(1):126–146
26 UNCTAD (2019). Handbook of Statistics. UN Conference on Trade and Develop. Available at https://unctad.org/en/PublicationsLibrary/tdstat44_en.pdf
27 Venskus, J. et al. (2017). Integration of a self-organizing map and a virtual pheromone for real-time abnormal movement detection in marine traffic. Informatica, 28(2):359–374
28 Venskus, J. et al. (2019). Real-time maritime traffic anomaly detection based on sensors and history data embedding. Sensors, 19(17):3782
29 Wang, X. et al. (2014). Vessel route anomaly detection with hadoop mapreduce. In 2014 IEEE Big Data, pages 25–30. IEEE
30 Weng, J. et al. (2018). Combining zero-inflated negative binomial regression with mlrt techniques: an approach to evaluating shipping accident casualties. Ocean Engineering, 166:135–144
31 Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proc. of EASE’14, pages 1–10
32 Yan, W. et al. (2016). Vessel movement analysis and pattern discovery using density-based clustering approach. In 2016 IEEE Big Data, pages 3798–3806. IEEE
33 Zhang, S.-k. et al. (2018). Data-driven based automatic maritime routing from massive ais trajectories in the face of disparity. Ocean Engineering, 155:240–250
34 Zhao, L. and Shi, G. (2019). Maritime anomaly detection using density-based clustering and recurrent neural network. The Journal of Navigation, 72(4):894–916
35 Zhen, R., Jin, Y., Hu, Q., Shao, Z., and Nikitakos, N. (2017). Maritime anomaly detection within coastal waters based on vessel trajectory clustering and naïve bayes classifier. The Journal of Navigation, 70(3):648–670
36 Zissis, D., Xidias, E. K., and Lekkas, D. (2015). A cloud based architecture capable of perceiving and predicting multiple vessel behaviour. App. Soft Computing, 35:652–661
37 Zor, C. and Kittler, J. (2017). Maritime anomaly detection in ferry tracks. In Int. Conf. on Acoustics, Speech and Signal Processing, pages 2647–2651. IEEE