1 |
Abedjan, Z., Golab, L., and Naumann, F. (2015). Profiling relational data: A survey. The VLDB Journal, 24(4):557–581.
|
|
2 |
Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases. Addison-Wesley.
|
|
3 |
Chu, X., Ilyas, I. F., and Papotti, P. (2013). Holistic data cleaning: Putting violations into context. pages 458–469.
|
|
4 |
Kimura, H., Huo, G., Rasin, A., Madden, S., and Zdonik, S. B. (2009). Correlation maps: A compressed access method for exploiting soft functional dependencies. Proc. VLDB Endow., 2(1):1222–1233.
|
|
5 |
Liu, J., Li, J., Liu, C., and Chen, Y. (2012). Discover dependencies from data - a review. IEEE TKDE, 24(2):251–264.
|
|
6 |
Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.-P., Schönberg, M., Zwiener, J., and Naumann, F. (2015). Functional dependency discovery: An experimental evaluation of seven algorithms. PVLDB., 8(10):1082–1093.
|
|
7 |
Pena, E. H. M. (2018). Workload-aware discovery of integrity constraints for data cleaning. In VLDB 2018 - PhD Workshop, volume 2175.
|
|
8 |
Pena, E. H. M. and de Almeida, E. C. (2018). Bfastdc: A bitwise algorithm for mining denial constraints. In Database and Expert Systems Applications (DEXA), pages 53–68, Cham. Springer International Publishing.
|
|
9 |
Pena, E. H. M. and de Almeida, E. C. (2019). Short paper: Descoberta automática de restrições de negação confiáveis. In XXXIV Simpósio Brasileiro de Banco de Dados, SBBD 2019, Fortaleza, CE, Brazil, October 7-10, 2019, pages 187–192. SBC.
|
|
10 |
Pena, E. H. M., de Almeida, E. C., and Naumann, F. (2019). Discovery of approximate (and exact) denial constraints. Proc. VLDB Endow., 13(3):266–278.
|
|
11 |
Pena, E. H. M., Falk, E., Meira, J. A., and de Almeida, E. C. (2018). Mind your dependencies for semantic query optimization. JIDM, 9(1):3–19.
|
|
12 |
Pena, E. H. M., Lucas Filho, E. R., de Almeida, E. C., and Naumann, F. (2020). Efficient detection of data dependency violations. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM), page 1235–1244.
|
|
13 |
Rekatsinas, T., Chu, X., Ilyas, I. F., and Ré, C. (2017). Holoclean: Holistic data repairs with probabilistic inference. PVLDB Endow., 10(11):1190–1201.
|
|
14 |
Santore, F., de Almeida, E. C., Bonat, W. H., Pena, E. H. M., and de Oliveira, L. E. S. (2020). A framework for analyzing the impact of missing data in predictive models. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM), pages 2209–2212.
|
|