1 |
Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32
|
|
2 |
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (2017). Classification and regression trees. Routledge
|
|
3 |
Charles, A. C., Ruback, L., and Oliveira, J. (2022). Fakepedia corpus: A flexible fake news corpus in portuguese. In Proc. of the Int’l Conference on Computational Processing of the Portuguese Language, pages 37-45.
|
|
4 |
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.
|
|
5 |
Conroy, N. K., Rubin, V. L., and Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. Proc. of the Association for Information Science and Technology, pages 1–4
|
|
6 |
Couto, J. M. M., Pimenta, B., de Araújo, I. M., Assis, S., Reis, J. C., da Silva, A. P. C., Almeida, J. M., and Benevenuto, F. (2021). Central de fatos: Um repositório de checagens de fatos. In Proc. of the Dataset Showcase Workshop (DSW), pages 128–137.
|
|
7 |
Couto, J. M. M., Reis, J. C., Cunha, Í., Ara ́ujo, L., and Benevenuto, F. (2022). Caracterizando websites de baixa credibilidade no brasil. In Anais do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 503–516. SBC.
|
|
8 |
Ferrara, E. (2020). What types of covid-19 conspiracies are populated by twitter bots? arXiv preprint arXiv:2004.09531.
|
|
9 |
Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. In European conference on machine learning, pages 137–142.
|
|
10 |
Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., et al. (2018). The science of fake news. Science, 359(6380):1094–1096.
|
|
11 |
Martins, A. D. F., Cabral, L., Mourao, P. J. C., Monteiro, J. M., and Machado, J. (2021). Detection of misinformation about covid-19 in brazilian portuguese whatsapp messages using deep learning. In Proc. of the Brazilian Symposium on Databases (SBBD), pages 85–96.
|
|
12 |
Massarani, L. M., Leal, T., Waltz, I., and Medeiros, A. (2021). Infodemia, desinformação e vacinas: a circulação de conteúdos em redes sociais antes e depois da covid-19. Liincem Revista, 17(1):e5689.
|
|
13 |
Monteiro, R. A., Santos, R. L., Pardo, T. A., Almeida, T. A. d., Ruiz, E. E., and Vale, O. A. (2018). Contributions to the study of fake news in portuguese: New corpus and automatic detection results. In Proc. of the Int’l Conference on Computational Processing of the Portuguese Language, pages 324–334.
|
|
14 |
Pérez-Rosas, V., Kleinberg, B., Lefevre, A., and Mihalcea, R. (2017). Automatic detection of fake news. arXiv preprint arXiv:1708.07104.
|
|
15 |
Reis, J. C., Correia, A., Murai, F., Veloso, A., and Benevenuto, F. (2019a). Explainable machine learning for fake news detection. In Proc. of the ACM Conference on Web Science, pages 17–26.
|
|
16 |
Reis, J. C., Correia, A., Murai, F., Veloso, A., and Benevenuto, F. (2019b). Supervised learning for fake news detection. IEEE Intelligent Systems, 34(2):76–81
|
|
17 |
Reis, J. C., Melo, P., Garimella, K., Almeida, J. M., Eckles, D., and Benevenuto, F. (2020). A dataset of fact-checked images shared on whatsapp during the brazilian and indian elections. In Proc. of the Int’l AAAI Conference on Weblogs and Social Media, pages 903–908.
|
|
18 |
Reis, J. C. S., de Souza, F., Vaz de Melo, P., Prates, R., Kwak, H., and An, J. (2015). Breaking the news: First impressions matter on online news. In Proc. of the Int’l AAAI Conference on Web and Social Media, pages 357–366
|
|
19 |
Ribeiro, F. N., Saha, K., Babaei, M., Henrique, L., Messias, J., Benevenuto, F., Oana Goga, K. P. G., and Redmiles, E. M. (2019). On microtargeting socially divisive ads: A case study of russia-linked ad campaigns on facebook. In Proc. of the ACM Conference on Fairness, Accountability, and Transparency.
|
|
20 |
Shu, K., Sliva, A., Wang, S., Tang, J., and Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1):22–36.
|
|
21 |
Tausczik, Y. R. and Pennebaker, J. W. (2010). The psychological meaning of words: Liwc and computerized text analysis methods. Journal of Language and Social Psychology, 29(1):24–54.
|
|
22 |
Vargas, F., D ́Alessandro, J., Rabinovich, Z., Benevenuto, F., and Pardo, T. A. (2022). Rhetorical structure approach for online deception detection: A survey. In Proc. of the Int’l Conference on Language Resources and Evaluation, pages 357–366
|
|
23 |
Volkova, S., Shaffer, K., Jang, J. Y., and Hodas, N. (2017). Separating facts from fiction: Linguistic models to classify suspicious and trusted news posts on twitter. In Proc. of the Annual Meeting of the Association for Computational Linguistics, pages 647–653
|
|
24 |
Vosoughi, S., Roy, D., and Aral, S. (2018). The spread of true and false news online. Science, 359(6380):1146–1151.
|
|
25 |
White, T. E. and Rege, M. (2020). Sentiment analysis on google cloud platform. Issues in Information Systems, 21(2):221–228.
|
|