1 |
Azam, F., Agro, M., Sami, M., Abro, M. H., and Dewani, A. (2021). Identifying depression
among twitter users using sentiment analysis. In 2021 international conference
on artificial intelligence (ICAI), pages 44–49. IEEE.
|
|
2 |
Balage Filho, P., Pardo, T. A. S., and Aluísio, S. (2013). An evaluation of the brazilian
portuguese liwc dictionary for sentiment analysis. In Proceedings of the 9th Brazilian
Symposium in Information and Human Language Technology.
|
|
3 |
Cacheda, F., Fernandez, D., Novoa, F. J., Carneiro, V., et al. (2019). Early detection of depression: social network analysis and random forest techniques. Journal of medical Internet research, 21(6):e12554.
|
|
4 |
Caseli, H. d. M. and Nunes, M. d. G. V. (2023). Processamento de linguagem natural: conceitos, técnicas e aplicações em português. BPLN, 2a edition.
|
|
5 |
da Silva Nascimento, R., Parreira, P., dos Santos, G. N., and Guedes, G. P. (2018). Identificando sinais de comportamento depressivo em redes sociais. In Anais do VII Brazilian Workshop on Social Network Analysis and Mining. SBC.
|
|
6 |
De Choudhury, M., Gamon, M., Counts, S., and Horvitz, E. (2013). Predicting depression via social media. In Seventh international AAAI conference on weblogs and social media, pages 128–137.
|
|
7 |
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4171–4186. NAACL.
|
|
8 |
Estrela, P., Andrade, L., Souza, D., Cunha, A., and Mendes, R. (2024). Análise de sentimentos em postagens do reddit no intercurso da pandemia de covid-19. Submetido à Revista Principia.
|
|
9 |
Herculano, A., Gomes, G., Souza, D., and Rêgo, A. (2022). Detecting signs of mental disorders on social networks: a systematic literature review. DATA ANALYTICS 2022, pages 55–61.
|
|
10 |
Ji, S., Zhang, T., Ansari, L., Fu, J., Tiwari, P., and Cambria, E. (2022). MentalBERT: Publicly available pretrained language models for mental healthcare. In Calzolari, N., Béchet, F., Blache, P., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara, H., Maegaard, B., Mariani, J., Mazo, H., Odijk, J., and Piperidis, S., editors, Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 7184–7190,
Marseille, France. European Language Resources Association.
|
|
11 |
Kristensen, C. H., Gomes, C. F. d. A., Justo, A. R., and Vieira, K. (2011). Normas brasileiras para o affective norms for english words. Trends in Psychiatry and Psychotherapy, 33:135–146.
|
|
12 |
Low, D. M., Rumker, L., Talkar, T., Torous, J., Cecchi, G., and Ghosh, S. S. (2020). Natural language processing reveals vulnerable mental health support groups and heightened health anxiety on reddit during covid-19: Observational study. Journal of medical Internet research, 22(10):e22635.
|
|
13 |
Nardi, A. E., da Silva, A. G., and Quevedo, J. (2021). Tratado de Psiquiatria da Associação Brasileira de Psiquiatria. Artmed Editora.
|
|
14 |
Pérez, A., Parapar, J., and Barreiro, Á. (2022). Automatic depression score estimation
with word embedding models. Artificial Intelligence in Medicine, 132:102380.
|
|
15 |
Sampath, K. and Durairaj, T. (2022). Data set creation and empirical analysis for detecting
signs of depression from social media postings. In International Conference on
Computational Intelligence in Data Science, pages 136–151. Springer.
|
|
16 |
Santos, W. R. d., de Oliveira, R. L., and Paraboni, I. (2023). Setembrobr: a social media
corpus for depression and anxiety disorder prediction. Language Resources and
Evaluation, pages 1–28.
|
|
17 |
Souza, F., Nogueira, R., and Lotufo, R. (2020). Bertimbau: pretrained bert models for brazilian
portuguese. In Intelligent Systems: 9th Brazilian Conference, BRACIS 2020, Rio
Grande, Brazil, October 20–23, 2020, Proceedings, Part I 9, pages 403–417. Springer.
|
|
18 |
Sperling, O. V. and Ladeira, M. (2019). Mining twitter data for signs of depression in
brazil. In Anais do VII Symposium on Knowledge Discovery, Mining and Learning,
pages 25–32. SBC.
|
|
19 |
Uban, A.-S., Chulvi, B., and Rosso, P. (2021). An emotion and cognitive based analysis of
mental health disorders from social media data. Future Generation Computer Systems,
124:480–494.
|
|
20 |
Vedula, N. and Parthasarathy, S. (2017). Emotional and linguistic cues of depression from
social media. In Proceedings of the 2017 International Conference on Digital Health,
pages 127–136.
|
|
21 |
WHO (2023). World health organization. https://www.who.int/news-room/
fact-sheets/detail/depression Last accessed 10 Julho 2024.
|
|