1 |
Bento, P., Aquino, Y., Buzelin, A., Rigueira, P. B., Gambogi, A., Porf ́ırio, L. G., Doria, I., Anunciac ̧ ̃ao, S., Mendes, G., Minardi, R., Paim, A. A., Pappa, G. L., da Fonseca, F., and Meira Jr., W. (2025). A machine learning-guided approach for a multiepitope hiv vaccine design. Revista Eletrˆonica de Iniciac ̧ ̃ao Cient ́ıfica em Computac ̧ ̃ao,
23(1):118–123.
|
|
2 |
Buzelin, A., Dutenhefner, P. R., Rezende, T., Porfirio, L. G., Bento, P., Aquino, Y., Fernandes, J., Santana, C., Miana, G., Pappa, G. L., Ribeiro, A., and Jr, W. M. (2025). A
cnn-based local-global self-attention via averaged window embeddings for hierarchical
ecg analysis.
|
|
3 |
ESM Team (2024). Esm cambrian: Revealing the mysteries of proteins with unsupervised
learning.Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., and Kumar, R. G. P. S. (2013). Toxinpred: a web server for the prediction of toxic peptides and proteins. Nucleic Acids
Research, 41(W1):W196–W203.
|
|
4 |
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., ˇZ ́ıdek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl,
S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler,
J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W.,
Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021). Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589.
|
|
5 |
Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli,
O., Shmueli, Y., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S., and
Rives, A. (2023). Evolutionary-scale prediction of atomic-level protein structure with
a language model. Science, 379(6637):1123–1130.
|
|
6 |
Morozov, V., Rodrigues, C. H. M., and Ascher, D. B. (2023). Csm-toxin: A web-server
for predicting protein toxicity. Pharmaceutics, 15(2):431.
|
|
7 |
Naamati, G., Winter, E., and Linial, M. (2009). Clantox: a classifier of animal toxins.Nucleic Acids Research, 37(Web Server issue):W602–W607.
|
|
8 |
Pan, X., Zuallaert, J., Wang, X., Shen, H.-B., Campos, E. P., Marushchak, D. O., and
Neve, W. D. (2020). Toxdl: deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics, 36(21):5159–5168.
|
|
9 |
Rappuoli, R., Mandl, C. W., Black, S., and Gregorio, E. D. (2011). Vaccines for the
twenty-first century society. Nature Reviews Immunology, 11(12):865–872.
|
|
10 |
Saha, S. and Raghava, G. P. (2007a). Btxpred: Support vector machine-based method for
predicting bacterial toxins. BMC Bioinformatics, 8:463.
|
|
11 |
Sharma, N., Devi, N. L., Jain, S., and Raghava, G. P. (2022). Toxinpred2: an improved
method for predicting toxicity of proteins. Briefings in Bioinformatics, 23(5):bbac174.
|
|
12 |
Sharma, N. and Raghava, G. P. (2024). Toxinpred 3.0: A deep learning-based model
for peptide and protein toxicity prediction. Manuscript accessed via Elsevier; exact
citation pending journal confirmation.
|
|
13 |
Zhu, L., Fang, Y., Liu, S., Shen, H.-B., Neve, W. D., and Pan, X. (2025). Toxdl 2.0: Protein toxicity prediction using a pretrained language model and graph neural networks.Computational and Structural Biotechnology Journal, 27:1538–1549.
|
|