SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Lucas Iuri dos Santos(lucasiuri@hotmail.com)
2 Luiz Celso Gomes Jr(lcjunior@utfpr.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Al-Rawas, G., Nikoo, M. R., Al-Wardy, M., and Etri, T (2024). A critical review of emerging technologies for flash flood prediction: examining artificial intelligence, machine learning, internet of things, cloud computing, and robotics techniques. Water, 16(14):2069.
2 Batalini de Macedo, M., Mangukiya, N. K., Fava, M. C., Sharma, A., Fray da Silva, R., Agarwal, A., Razzolini, M. T., Mendiondo, E. M., Goel, N. K., Kurian, M., et al. (2024). Performance analysis of physically-based (hec-ras, caddies) and ai-based (lstm) flood models for two case studies. Proceedings of IAHS, 386:41–46.
3 CEMADEN (2024). Mapa Interativo — mapainterativo.cemaden.gov.br. https://mapainterativo.cemaden.gov.br/#. Accessed: 2024-12-16.
4 de Sousa Araújo, A., Silva, A. R., and Zárate, L. E. (2022). Extreme precipitation prediction based on neural network model–a case study for southeastern brazil. Journal of Hydrology, 606:127454.
5 Fang, Z., Wang, Y., Peng, L., and Hong, H. (2021). Predicting flood susceptibility using lstm neural networks. Journal of Hydrology, 594:125734.
6 Fernandez, H. G. and Splendore, P. R. (2021). Sistema de Identificação Automática de Riscos Hidrometeorológicos com Retroalimentação e Reestruturação Autônoma da Infraestrutura de Comunicação.
7 Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. ” O’Reilly Media, Inc.”.
8 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., et al (2020). The era5 global reanalysis. Quarterly journal of the royal meteorological society, 146(730):1999–2049.
9 Hochreiter, S. (1997). Long short-term memory. Neural Computation MIT-Press.
10 IPPUC (2022). Registros alagamentos. Accessed: 2022-11-07.
11 Le, X.-H., Ho, H. V., Lee, G., and Jung, S. (2019). Application of long short-term memory (lstm) neural network for flood forecasting. Water, 11(7):1387.
12 Maciel, E. (2025). Brazil faces huge surge in climate disasters amid poor prevention funding. https://www.developmentaid.org/news-stream/post/193539/brazil-faces-surge-in-climate-disasters. Accessed: 2025-06-07.
13 Noboa, C. S., Pigatto, D., Buffon, E. M., and Gomes-Jr, L. (2024). Data analytics for a changing climate: Feature engineering for the forecast of hydrometeorological events. In Simpósio Brasileiro de Banco de Dados (SBBD), pages 715–721. SBC.
14 SEDEC (2024). Classificação e Codificação Brasileira de Desastres (COBRADE). https://www.gov.br/mdr/pt-br/centrais-de-conteudo/publicacoes/protecao-e-defesa-civil-sedec/DOCU_cobrade2.pdf. Accessed: 2025-06-07.
15 USGS. What are the two main types of floods? https://www.usgs.gov/faqs/what-are-two-types-floods. Accessed: 2025-06-07.