1 |
Ai, W., Xu, J., Shao, H., Wang, Z., & Meng, T. (2021). An Entity Event Deduplication Method Based on Connected Subgraph. In Proceedingsns of the 7th International Conference on Systems and Informatics (ICSAI), pages 1–6. IEEE.
|
|
2 |
Alexiou, G., Papastefanatos, G., Stamatopoulos, V., Koutrika, G., & Koziris, N. (2022). QueryER: A Framework for Fast Analysis-Aware Deduplication over Dirty Data. arXiv preprint arXiv:2202.01546.
|
|
3 |
Azeroual, O., Jha, M., Nikiforova, A., Sha, K., Alsmirat, M., & Jha, S. (2022). A Record Linkage-Based Data Deduplication Framework with DataCleaner Extension. Multimodal Technologies and Interaction, 6(4):27
|
|
4 |
artus, P. & Arzuaga, E. (2018). Gdedup: Distributed File System Level Deduplication for Genomic Big Data. In 2018 IEEE International Congress on Big Data (BigData Congress), pages 120–127. IEEE.
|
|
5 |
artus, P. & Arzuaga, E. (2018). Gdedup: Distributed File System Level Deduplication for Genomic Big Data. In 2018 IEEE International Congress on Big Data (BigData Congress), pages 120–127. IEEE
|
|
6 |
Caldeira, L. S. & Ferreira, A. A. (2018). Melhorias no Processo de Blocagem para Resoluc ̧ ̃ao de Entidades Baseadas na Relevˆancia dos Termos. In Anais do XXXIII Simp ́osio Brasileiro de Bancos de Dados, pages 61–72. SBC.
|
|
7 |
Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., & Trani, S. (2013). Dexter: An Open Source Fra- mework for Entity Linking. In Proceedings of the Sixth International Workshop on Exploiting Semantic Annotations in Information Retrieval, pages 17–20.
|
|
8 |
hristen, P. (2009). Development and user experiences of an open source data cleaning, deduplication and record linkage system. ACM SIGKDD Explorations Newsletter, 11(1):39–48.
|
|
9 |
Christen, P. (2011). A survey of indexing techniques for scalable record linkage and deduplication. IEEE Transactions on Knowledge and Data Engineering, 24(9):1537–1555.
|
|
10 |
Espiridi ̃ao, L. V., Dias, L. L., & Ferreira, A. A. (2021). Applying Data Augmentation for Disambiguating Author Names. In Anais do XXXVI Simp ́osio Brasileiro de Bancos de Dados, pages 109–120. SBC.
|
|
11 |
Ferreira, A. A., Gonc ̧alves, M. A., & Laender, A. H. F. (2020). Automatic Disambiguation of Author Names in Bibliographic Repositories. Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan & Claypool Publishers
|
|
12 |
Kaur, R., Chana, I., & Bhattacharya, J. (2018). Data deduplication techniques for efficient cloud storage management: a systematic review. The Journal of Supercomputing, 74(5):2035–2085.
|
|
13 |
Ngueilbaye, A., Wang, H., Mahamat, D. A., & Elgendy, I. A. (2021). SDLER: stacked dedupe learning for entity resolution in big data era. The Journal of Supercomputing, 77(10):10959–10983.
|
|
14 |
Papadakis, G., Skoutas, D., Thanos, E., & Palpanas, T. (2020). Blocking and filtering techniques for entity resolution: A survey. ACM Computing Surveys), 53(2):1–42.
|
|
15 |
Singhal, H., Ravi, H., Chakravarthy, S. N., Balasundaram, P., & Babu, C. (2019). EPMS: A Framework for Large-scale Patient Matching. In 31st IEEE International Conference on Tools with Artificial Intel- ligence (ICTAI), pages 1096–1101. IEEE.
|
|
16 |
tonebraker, M., Ilyas, I. F., et al. (2018). Data Integration: The Current Status and the Way Forward. IEEE Data Eng. Bull., 41(2):3–9.
|
|
17 |
Zhou, Y. & Talburt, J. R. (2011). Entity Identity Information Management (EIIM). In Proceedings of the International Conference on Information Quality, pages 327–241
|
|
18 |
Ziegler, P. & Dittrich, K. R. (2007). Data Integration - Problems, Approaches, and Perspectives. In Con- ceptual Modelling in Information Systems Engineering, pages 39–58. Springer.
|
|