1 |
Amir, A. and Keselman, D. (1997). Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms. SIAM J. on Comp., 26(6):1656–1669.
|
|
2 |
Barham, P., Donnelly, A., Isaacs, R., and Mortier, R. (2004). Using magpie for request extraction and workload modelling. In OSDI’04, San Francisco, CA. USENIX Association
|
|
3 |
Ben-Shimol, L., Lavi, D., Klevansky, E., Brodt, O., Mimran, D., Elovici, Y., and Shabtai, A. (2025). Detection of compromised functions in a serverless cloud environment. Computers & Security, 150:104261.
|
|
4 |
Bux, M., Brandt, J., Lipka, C., Hakimzadeh, K., Dowling, J., and Leser, U. (2015). SAASFEE: scalable scientific workflow execution engine. Proc. VLDB Endow., 8(12):1892-1895.
|
|
5 |
Cantrill, B. M., Shapiro, M. W., and Leventhal, A. H. (2004). Dynamic instrumentation of production systems. In USENIX ATC’04, Boston, MA. USENIX.
|
|
6 |
Datta, P., Polinsky, I., Inam, M. A., Bates, A., and Enck, W. (2022). Alastor: Reconstructing the provenance of serverless intrusions. In USENIX Security Symposium.
|
|
7 |
de Oliveira, D., Liu, J., and Pacitti, E. (2019). Data-Intensive Workflow Management: For Clouds and Data-Intensive and Scalable Computing Environments. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.
|
|
8 |
Elshamy, A., Alquraan, A., and Al-Kiswany, S. (2023). A study of orchestration approaches for scientific workflows in serverless computing. SESAME ’23, page 34–40, New York, NY, USA. ACM.
|
|
9 |
Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Computing in Science & Engineering, 10(3):11–21.
|
|
10 |
Goloboff, P. A., Catalano, S. A., Marcos Mirande, J., Szumik, C. A., Salvador Arias, J., K¨allersj¨o, M., and Farris, J. S. (2009). Phylogenetic analysis of 73 060 taxa corroborates major eukaryotic groups. Cladistics, 25(3):211–230
|
|
11 |
Guerra, G., Rochinha, F. A., Elias, R., De Oliveira, D., Ogasawara, E., Dias, J. F., Mattoso, M., and Coutinho, A. L. (2012). Uncertainty quantification in computational predictive models for fluid dynamics using a workflow management engine. Int. J. for Uncert.Quant., 2(1):53–71.
|
|
12 |
Hautz, M., Ristov, S., and Felderer, M. (2023). Characterizing afcl serverless scientific workflows in federated faas. WoSC ’23, page 24–29, NY, USA. ACM.
|
|
13 |
Hellerstein, J. M., Faleiro, J., Gonzalez, J. E., Schleier-Smith, J., Sreekanti, V., Tumanov, A., and Wu, C. (2019). Serverless computing: One step forward, two steps back. In CIDR. www.cidrdb.org.
|
|
14 |
Herschel, M., Diestelk¨amper, R., and Ben Lahmar, H. (2017). A survey on provenance: What for? what form? what from? The VLDB Journal, 26.
|
|
15 |
Huang, J., Chen, P., Yu, G., Wang, Y., Huang, H., and He, Z. (2024). Faasrca: Full lifecycle root cause analysis for serverless applications. In ISSRE’24, pages 415–426. IEEE.
|
|
16 |
Kamble, S., Jin, X., Niu, N., and Simon, M. (2017). A novel coupling pattern in computational science and engineering software. In Proceedings of the 12th International Workshop on Software Engineering for Science, SE4Science ’17, page 9–12. IEEE Press.
|
|
17 |
Khochare, A., Simmhan, Y., Mehta, S., and Agarwal, A. (2022). Toward scientific workflows in a serverless world. In 2022 IEEE e-Science, pages 399–400.
|
|
18 |
Kiar, G., Brown, S. T., Glatard, T., and Evans, A. C. (2019). A serverless tool for platform agnostic computational experiment management. Frontiers in Neuroinformatics, 13.
|
|
19 |
Mattoso, M., Werner, C., Travassos, G. H., Braganholo, V., Ogasawara, E., Oliveira, D., Cruz, S., Martinho, W., and Murta, L. (2010). Towards supporting the life cycle of large scale scientific experiments. International Journal of Business Process Integration and Management, 5(1):79.
|
|
20 |
Moreau, L. and Groth, P. (2013). Provenance: an introduction to prov. Synthesis Lectures on the Semantic Web: Theory and Technology, 3(4):1–129.
|
|
21 |
Moreau, L., Ludäscher, B., Altintas, I., Barga, R.S., Bowers, S., Callahan, S., Chin, G., JR., Clifford, B., Cohen, S., Cohen-Boulakia, S., Davidson, S., Deelman, E., Digiampietri, L., Foster, I., Freire, J., Frew, J., Futrelle, J., Gibson, T., Gil, Y., Goble, C., Golbeck, J., Groth, P., Holland, D.A., Jiang, S., Kim, J., Koop, D., Krenek, A., McPhillips, T., Mehta, G., Miles, S., Metzger, D., Munroe, S., Myers, J., Plale, B., Podhorszki, N., Ratnakar, V., Santos, E., Scheidegger, C., Schuchardt, K., Seltzer, M., Simmhan, Y.L., Silva, C., Slaughter, P., Stephan, E., Stevens, R., Turi, D., Vo, H., Wilde, M., Zhao, J. and Zhao, Y. (2008), Special Issue: The First Provenance Challenge. Concurrency Computat.: Pract. Exper., 20: 409-418. https://doi.org/10.1002/cpe.1233
|
|
22 |
Neves, V. C., de Oliveira, D., Ocaña, K. A. C. S., Braganholo, V., and Murta, L. (2017). Managing provenance of implicit data flows in scientific experiments. ACM Trans. Internet Techn., 17(4):36:1–36:22.
|
|
23 |
Ocaña, K. and de Oliveira, D. (2015). Parallel computing in genomic research: advances and applications. Adv. Appl. Bioinform. Chem., 8:23–35.
|
|
24 |
Pimentel, J. F., Murta, L., Braganholo, V., and Freire, J. (2017). noworkflow: a tool for collecting, analyzing, and managing provenance from python scripts. VLDB, 10(12).
|
|
25 |
Pina, D., Kunstmann, L., Chapman, A., de Oliveira, D., and Mattoso, M. (2025). DLProv: a suite of provenance services for deep learning workflow analyses. PeerJ Comput. Sci., 11(e2985):e2985.
|
|
26 |
Puigbo, P., Wolf, Y. I., and Koonin, E. V. (2019). Genome-wide comparative analysis of phylogenetic trees: The prokaryotic forest of life. In Evolutionary Genomics: Statistical and Computational Methods, pages 241–269. Springer New York, New York, NY.
|
|
27 |
Rude, U., Willcox, K., McInnes, L. C., and Sterck, H. D. (2018). Research and education in computational science and engineering. Siam Review, 60(3):707–754
|
|
28 |
Satapathy, U., Thakur, R., Chattopadhay, S., and Chakraborty, S. (2023). Disprotrack: Distributed provenance tracking over serverless applications. In INFOCOM 2023, pages 1–10.
|
|
29 |
Silva, V., de Oliveira, D., Valduriez, P., and Mattoso, M. (2018). Dfanalyzer: Runtime dataflow analysis of scientific applications using provenance. Proceedings of the VLDB Endowment.
|
|
30 |
Skluzacek, T. J., Chard, R., Wong, R., Li, Z., Babuji, Y. N., Ward, L., Blaiszik, B., Chard, K., and Foster, I. (2019). Serverless workflows for indexing large scientific data. In Proceedings of the 5th International Workshop on Serverless Computing, pages 43–48.
|
|
31 |
Wen, J., Chen, Z., Liu, Y., Lou, Y., Ma, Y., Huang, G., Jin, X., and Liu, X. (2021). An empirical study on challenges of application development in serverless computing. In Proc. of the ESEC/FSE 2023, pages 416–428.
|
|
32 |
Wen, J., Chen, Z., Zhao, J., Sarro, F., Ping, H., Zhang, Y., Wang, S., and Liu, X. (2025). Scope: Performance testing for serverless computing. ACM Transactions on Software Engineering and Methodology.
|
|