SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Marcello Ribeiro(marcellomessina@id.uff.br)
2 Ubiratam De Paula(upaula@ufrrj.br)
3 Liliane Kunstmann(lneves@cos.ufrj.br)
4 Yuri Frota(yuri@ic.uff.br)
5 Isabel Rosseti(rosseti@ic.uff.br)
6 Daniel de Oliveira(danielcmo@ic.uff.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Amir, A. and Keselman, D. (1997). Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms. SIAM J. on Comp., 26(6):1656–1669.
2 Barham, P., Donnelly, A., Isaacs, R., and Mortier, R. (2004). Using magpie for request extraction and workload modelling. In OSDI’04, San Francisco, CA. USENIX Association
3 Ben-Shimol, L., Lavi, D., Klevansky, E., Brodt, O., Mimran, D., Elovici, Y., and Shabtai, A. (2025). Detection of compromised functions in a serverless cloud environment. Computers & Security, 150:104261.
4 Bux, M., Brandt, J., Lipka, C., Hakimzadeh, K., Dowling, J., and Leser, U. (2015). SAASFEE: scalable scientific workflow execution engine. Proc. VLDB Endow., 8(12):1892-1895.
5 Cantrill, B. M., Shapiro, M. W., and Leventhal, A. H. (2004). Dynamic instrumentation of production systems. In USENIX ATC’04, Boston, MA. USENIX.
6 Datta, P., Polinsky, I., Inam, M. A., Bates, A., and Enck, W. (2022). Alastor: Reconstructing the provenance of serverless intrusions. In USENIX Security Symposium.
7 de Oliveira, D., Liu, J., and Pacitti, E. (2019). Data-Intensive Workflow Management: For Clouds and Data-Intensive and Scalable Computing Environments. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.
8 Elshamy, A., Alquraan, A., and Al-Kiswany, S. (2023). A study of orchestration approaches for scientific workflows in serverless computing. SESAME ’23, page 34–40, New York, NY, USA. ACM.
9 Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Computing in Science & Engineering, 10(3):11–21.
10 Goloboff, P. A., Catalano, S. A., Marcos Mirande, J., Szumik, C. A., Salvador Arias, J., K¨allersj¨o, M., and Farris, J. S. (2009). Phylogenetic analysis of 73 060 taxa corroborates major eukaryotic groups. Cladistics, 25(3):211–230
11 Guerra, G., Rochinha, F. A., Elias, R., De Oliveira, D., Ogasawara, E., Dias, J. F., Mattoso, M., and Coutinho, A. L. (2012). Uncertainty quantification in computational predictive models for fluid dynamics using a workflow management engine. Int. J. for Uncert.Quant., 2(1):53–71.
12 Hautz, M., Ristov, S., and Felderer, M. (2023). Characterizing afcl serverless scientific workflows in federated faas. WoSC ’23, page 24–29, NY, USA. ACM.
13 Hellerstein, J. M., Faleiro, J., Gonzalez, J. E., Schleier-Smith, J., Sreekanti, V., Tumanov, A., and Wu, C. (2019). Serverless computing: One step forward, two steps back. In CIDR. www.cidrdb.org.
14 Herschel, M., Diestelk¨amper, R., and Ben Lahmar, H. (2017). A survey on provenance: What for? what form? what from? The VLDB Journal, 26.
15 Huang, J., Chen, P., Yu, G., Wang, Y., Huang, H., and He, Z. (2024). Faasrca: Full lifecycle root cause analysis for serverless applications. In ISSRE’24, pages 415–426. IEEE.
16 Kamble, S., Jin, X., Niu, N., and Simon, M. (2017). A novel coupling pattern in computational science and engineering software. In Proceedings of the 12th International Workshop on Software Engineering for Science, SE4Science ’17, page 9–12. IEEE Press.
17 Khochare, A., Simmhan, Y., Mehta, S., and Agarwal, A. (2022). Toward scientific workflows in a serverless world. In 2022 IEEE e-Science, pages 399–400.
18 Kiar, G., Brown, S. T., Glatard, T., and Evans, A. C. (2019). A serverless tool for platform agnostic computational experiment management. Frontiers in Neuroinformatics, 13.
19 Mattoso, M., Werner, C., Travassos, G. H., Braganholo, V., Ogasawara, E., Oliveira, D., Cruz, S., Martinho, W., and Murta, L. (2010). Towards supporting the life cycle of large scale scientific experiments. International Journal of Business Process Integration and Management, 5(1):79.
20 Moreau, L. and Groth, P. (2013). Provenance: an introduction to prov. Synthesis Lectures on the Semantic Web: Theory and Technology, 3(4):1–129.
21 Moreau, L., Ludäscher, B., Altintas, I., Barga, R.S., Bowers, S., Callahan, S., Chin, G., JR., Clifford, B., Cohen, S., Cohen-Boulakia, S., Davidson, S., Deelman, E., Digiampietri, L., Foster, I., Freire, J., Frew, J., Futrelle, J., Gibson, T., Gil, Y., Goble, C., Golbeck, J., Groth, P., Holland, D.A., Jiang, S., Kim, J., Koop, D., Krenek, A., McPhillips, T., Mehta, G., Miles, S., Metzger, D., Munroe, S., Myers, J., Plale, B., Podhorszki, N., Ratnakar, V., Santos, E., Scheidegger, C., Schuchardt, K., Seltzer, M., Simmhan, Y.L., Silva, C., Slaughter, P., Stephan, E., Stevens, R., Turi, D., Vo, H., Wilde, M., Zhao, J. and Zhao, Y. (2008), Special Issue: The First Provenance Challenge. Concurrency Computat.: Pract. Exper., 20: 409-418. https://doi.org/10.1002/cpe.1233
22 Neves, V. C., de Oliveira, D., Ocaña, K. A. C. S., Braganholo, V., and Murta, L. (2017). Managing provenance of implicit data flows in scientific experiments. ACM Trans. Internet Techn., 17(4):36:1–36:22.
23 Ocaña, K. and de Oliveira, D. (2015). Parallel computing in genomic research: advances and applications. Adv. Appl. Bioinform. Chem., 8:23–35.
24 Pimentel, J. F., Murta, L., Braganholo, V., and Freire, J. (2017). noworkflow: a tool for collecting, analyzing, and managing provenance from python scripts. VLDB, 10(12).
25 Pina, D., Kunstmann, L., Chapman, A., de Oliveira, D., and Mattoso, M. (2025). DLProv: a suite of provenance services for deep learning workflow analyses. PeerJ Comput. Sci., 11(e2985):e2985.
26 Puigbo, P., Wolf, Y. I., and Koonin, E. V. (2019). Genome-wide comparative analysis of phylogenetic trees: The prokaryotic forest of life. In Evolutionary Genomics: Statistical and Computational Methods, pages 241–269. Springer New York, New York, NY.
27 Rude, U., Willcox, K., McInnes, L. C., and Sterck, H. D. (2018). Research and education in computational science and engineering. Siam Review, 60(3):707–754
28 Satapathy, U., Thakur, R., Chattopadhay, S., and Chakraborty, S. (2023). Disprotrack: Distributed provenance tracking over serverless applications. In INFOCOM 2023, pages 1–10.
29 Silva, V., de Oliveira, D., Valduriez, P., and Mattoso, M. (2018). Dfanalyzer: Runtime dataflow analysis of scientific applications using provenance. Proceedings of the VLDB Endowment.
30 Skluzacek, T. J., Chard, R., Wong, R., Li, Z., Babuji, Y. N., Ward, L., Blaiszik, B., Chard, K., and Foster, I. (2019). Serverless workflows for indexing large scientific data. In Proceedings of the 5th International Workshop on Serverless Computing, pages 43–48.
31 Wen, J., Chen, Z., Liu, Y., Lou, Y., Ma, Y., Huang, G., Jin, X., and Liu, X. (2021). An empirical study on challenges of application development in serverless computing. In Proc. of the ESEC/FSE 2023, pages 416–428.
32 Wen, J., Chen, Z., Zhao, J., Sarro, F., Ping, H., Zhang, Y., Wang, S., and Liu, X. (2025). Scope: Performance testing for serverless computing. ACM Transactions on Software Engineering and Methodology.