SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 KARLA DA-SILVA(karlafelicia.ti@gmail.com)
2 ANTONIO BATISTA-JR(antonio.batista@ufma.br)
3 Jesus Mena-Chalco(jesus.mena@ufabc.edu.br)
4 LUCIANO COUTINHO(luciano.rc@ufma.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., and Wallach, H. (2018). A reductions approach to fair classification. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 60–69. PMLR.
2 Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., Guidotti, R., Del Ser, J., Díaz-Rodríguez, N., and Herrera, F. (2023). Explainable artificial intelligence (xai): What we know and what is left to attain trustworthy artificial intelligence. Information Fusion, 99:101805.
3 Aragão, L. R., Silva, M., and Machado, J. (2024). The inefficiency of achieving fairness with protected attribute suppression. In Anais do XXXIX Simpósio Brasileiro de Bancos de Dados, pages 813–819, Porto Alegre, RS, Brasil. SBC.
4 Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and Tramèr, F. (2022). Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE.
5 Chang, H. and Shokri, R. (2021). On the Privacy Risks of Algorithmic Fairness . In 2021 IEEE European Symposium on Security and Privacy (EuroS&P), pages 292–303, Los Alamitos, CA, USA. IEEE Computer Society.
6 Japkowicz, N. and Stephen, S. (2002). The class imbalance problem: A systematic study. Intell. Data Anal., 6(5):429–449.
7 Johnson, J. M. and Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 6(1):27.
8 Kaur, D., Uslu, S., Rittichier, K. J., and Durresi, A. (2022). Trustworthy artificial intelligence: A review. ACM Comput. Surv., 55(2).
9 Le, T.-T.-H., Liu, Z., Li, R., Miao, D., Ren, L., and Zhao, Y. (2022). Membership inference defense in distributed federated learning based on gradient differential privacy and trust domain division mechanisms. Security and Communication Networks, 2022:1615476.
10 Mariscal, C., Galante, R., and Cordeiro, W. (2024). Predicting the next transaction on anonymized payment datasets with deep learning models. In Anais do XXXIX Simpósio Brasileiro de Bancos de Dados, pages 639–651, Porto Alegre, RS, Brasil. SBC.
11 Nguyen, T. T., Huynh, T. T., Ren, Z., Nguyen, T. T., Nguyen, P. L., Yin, H., and Nguyen, Q. V. H. (2024). Privacy-preserving explainable ai: a survey. Science China Information Sciences, 68(1):111101.
12 Niu, J., Liu, P., Zhu, X., Shen, K., Wang, Y., Chi, H., Shen, Y., Jiang, X., Ma, J., and Zhang, Y. (2024). A survey on membership inference attacks and defenses in machine learning. Journal of Information and Intelligence, 2(5):404–454.
13 Pawelczyk, M., Lakkaraju, H., and Neel, S. (2023). On the privacy risks of algorithmic recourse. In Ruiz, F., Dy, J., and van de Meent, J.-W., editors, Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pages 9680–9696. PMLR.
14 Pinheiro, M. V., Silva, M. M., and Machado, J. (2023). Strategies selection for a fair classification in logistic regression: A comparative analysis. In Anais Estendidos do XXXVIII Simpósio Brasileiro de Bancos de Dados, pages 15–21, Porto Alegre, RS, Brasil. SBC.
15 Sablayrolles, A., Douze, M., Schmid, C., Ollivier, Y., and Jegou, H. (2019). White-box vs black-box: Bayes optimal strategies for membership inference. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 5558–5567. PMLR.
16 Sena, L. and Machado, J. (2024). Evaluation of fairness in machine learning models using the uci adult dataset. In Anais do XXXIX Simpósio Brasileiro de Bancos de Dados, pages 743–749, Porto Alegre, RS, Brasil. SBC.
17 Shaik, T., Tao, X., Xie, H., Li, L., Zhu, X., and Li, Q. (2025). Exploring the landscape of machine unlearning: A comprehensive survey and taxonomy. IEEE Transactions on Neural Networks and Learning Systems, 36(7):11676–11696.
18 Shokri, R., Strobel, M., and Zick, Y. (2021). On the privacy risks of model explanations. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, AIES ’21, page 231–241, New York, NY, USA. Association for Computing Machinery.
19 Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017). Membership inference attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pages 3–18.
20 Thai-Nghe, N., Gantner, Z., and Schmidt-Thieme, L. (2010). Costsensitive learning methods for imbalanced data. In The 2010 International Joint Conference on Neural Networks (IJCNN), pages 1–8.
21 Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. (2018). Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting . In 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pages 268–282, Los Alamitos, CA, USA. IEEE Computer Society.