SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Renan Oliveira(renanribeiro78@gmail.com)
2 José Costa Filho(serafim.costa@lsbd.ufc.br)
3 José Maria Monteiro Filho(monteiro@dc.ufc.br)
4 Javam Machado(javam.machado@lsbd.ufc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 [Abadi et al. 2016] Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,Mironov, I., Talwar, K., and Zhang, L. (2016). Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, New York, NY, USA. Association for Computing Machinery.
2 [Chan et al. 2012] Chan, T. H. H., Li, M., Shi, E., and Xu, W. (2012). Differentially private continual monitoring of heavy hitters from distributed streams. In Privacy Enhancing Technologies: 12th International Symposium, PETS 2012, Vigo, Spain, July 11-13, 2012. Proceedings 12, pages 140–159. Springer.
3 [Chen and Wang 2022] Chen, Z. and Wang, J. (2022). Ldp-fpminer: Fp-tree based frequent itemset mining with local differential privacy. arXiv preprint arXiv:2209.01333.
4 [Dwork 2011] Dwork, C. (2011). A firm foundation for private data analysis. Commun. ACM, 54(1):86–95.
5 [Dwork et al. 2006] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Halevi, S. and Rabin, T., editors, Theory of Cryptography, pages 265–284. Springer Berlin Heidelberg.
6 [Dwork et al. 2014] Dwork, C., Roth, A., et al. (2014). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407.
7 [Erlingsson et al. 2014] Erlingsson, U., Pihur, V., and Korolova, A. (2014). Rappor: Randomized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA. Association for Computing Machinery.
8 [Filho and Machado 2023] Filho, J. S. C. and Machado, J. C. (2023). Felip: A local differentially private approach to frequency estimation on multidimensional datasets. In International Conference on Extending Database Technology.
9 [Frenkel and Isaac 2018] Frenkel, S. and Isaac, M. (2018). Facebook security breach exposes accounts of 50 million users. https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html. Accessed: 2024-01-12.
10 [Geurts et al. 2003] Geurts, K., Wets, G., Brijs, T., and Vanhoof, K. (2003). Profiling high frequency accident locations using association rules. In Proceedings of the 82nd Annual Transportation Research Board, Washington DC. (USA), January 12-16, page 18pp.
11 [K et al. 2021] K, M. V., Immanuel Johnraja, J., Jeba Leelipushpam, G., Jebaveerasingh Jebadurai, J., and Santhosam, I. B. (2021). Security and privacy issues in the internet of things – a survey. In 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC).
12 [Kairouz et al. 2016] Kairouz, P., Bonawitz, K., and Ramage, D. (2016). Discrete distribution estimation under local privacy. In International Conference on Machine Learning, pages 2436–2444. PMLR.
13 [Li et al. 2025] Li, Y., Huang, C., Cheng, M., Lv, T., Zhao, Y., Sun, Y., and Yuan, Y. (2025). Privminer: a similar-first approach to frequent itemset mining under local differential privacy. World Wide Web, 28(2):25.
14 [Lin et al. 2020] Lin, F., Muzumdar, K., Laptev, N. P., Curelea, M.-V., Lee, S., and Sankar, S. (2020). Fast dimensional analysis for root cause investigation in a large-scale service environment. Proc. ACM Meas. Anal. Comput. Syst., 4(2).
15 [Neto et al. 2024] Neto, A. A. M., Neto, E. D., Filho, J. C., and Machado, J (2024). Locally differentially private and consistent frequency estimation of longitudinal data. In Anais do XXXIX Simpósio Brasileiro de Bancos de Dados, pages 367–380, Porto Alegre, RS, Brasil. SBC.
16 [Oliveira 2025] Oliveira, R. (2025). Sharkfin. https://github.com/renanlsbd/SharkFin. Accessed: 2025-04-06.
17 [Qin et al. 2016] Qin, Z., Yang, Y., Yu, T., Khalil, I., Xiao, X., and Ren, K (2016). Heavy hitter estimation over set-valued data with local differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS’16, page 192–203, New York, NY, USA. Association for Computing Machinery.
18 [Satariano et al. 2018] Satariano, A., Perlroth, N., and Tsang, A. (2018). Marriott hacking exposes data of up to 500 million guests. Accessed: 2024-01-12.
19 [Wang et al. 2017] Wang, T., Blocki, J., Li, N., and Jha, S. (2017). Locally differentially private protocols for frequency estimation. In 26th USENIX Security Symposium (USENIX Security 17), pages 729–745.
20 [Wang et al. 2018] Wang, T., Li, N., and Jha, S. (2018). Locally differentially private frequent itemset mining. In 2018 IEEE Symposium on Security and Privacy (SP), pages 127–143.
21 [Warner 1965] Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63–69.
22 [Zhao et al. 2023] Zhao, D., Zhao, S.-Y., Chen, H., Liu, R.-X., Li, C.-P., and Zhang, X.-Y. (2023). Hadamard encoding based frequent itemset mining under local differential privacy. Journal of Computer Science and Technology, 38(6):1403–1422.
23 [Zhu 2018] Zhu, E. (2018). Set similarity search benchmarks. https://github.com/ekzhu/set-similarity-search-benchmarks/tree/master. Accessed: 2025-04-06.
24 [Zhu et al. 2017] Zhu, T., Li, G., Zhou, W., and Yu, P. S. (2017). Differentially private data publishing and analysis: A survey. IEEE Transactions on Knowledge and Data Engineering, 29(8):1619–1638.