SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Caique Noboa(noboa@alunos.utfpr.edu.br)
2 Daniel Pigatto(pigatto@utfpr.edu.br)
3 Elaiz Buffon(eambuffon@gmail.com)
4 Luiz Gomes-Jr(lcjunior@utfpr.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
2 Buffon, E. A. M. (2020). Inundac¸ ˜oes Em ´Areas Urbanas: Proposic¸ ˜ao Conceitual- Metodol´ogica E Sua Aplicac¸ ˜ao Na RMC – Regi˜ao Metropolitana De Curitiba.
3 Buffon, E. A. M. and de Sousa, M. S. (2018). Proposta Metodol´ogica Para Avaliac¸ ˜ao Dos Registros Secund´arios De Alagamentos: Uma Abordagem A Partir De Curitiba- Paran´a, Brasil.
4 Cemaden (2021). Pluviˆometros Autom´aticos – Cemaden. Accessed: 2022-11-03.
5 de Curitiba, P. M. (2022). Dados Geogr´aficos de Curitiba. Accessed: 2022-11-05.
6 Fernandez, H. G. and Splendore, P. R. (2021). Sistema De Identificac¸ ˜ao Autom´atica De Riscos Hidrometeorol´ogicos Com Retroalimentac¸ ˜ao E Reestruturac¸ ˜ao Autˆonoma Da Infraestrutura De Comunicac¸ ˜ao. Curitiba, Brasil.
7 IPPUC (2022). Registros Alagamentos. Accessed: 2022-11-07.
8 Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics-Theory and methods, 26(6):1481–1496.
9 Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R News, pages 18–22.
10 Lohmann, M. (2011). Regress˜ao Log´ıstica E Redes Neurais Aplicadas `A Previs˜ao Prob- abil´ıstica De Alagamentos No Munic´ıpio De Curitiba, PR. Curitiba, Brasil.
11 Matisziw, T. C. and Murray, A. T. (2009). Modeling s–t path availability to support disaster vulnerability assessment of network infrastructure. Computers & Operations Research, 36(1):16–26.
12 Noronha, G. (2021). Enchentes – O que s˜ao, caracter´ısticas, causas e impacto urbano.
13 Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1.
14 Wu, E., Liu, W., and Chawla, S. (2010). Spatio-temporal outlier detection in precipitation data. In Knowledge Discovery from Sensor Data, pages 115–133. Springer Berlin Heidelberg.