1 |
Bhattacharya, C., De, S., Mukhopadhyay, A., Sen, S., and Ray, A. (2020). Detection and classification of lean blow-out and thermoacoustic instability in turbulent combustors. Applied
Thermal Engineering, 180.
|
|
2 |
Bürger, F. and Pauli, J. (2013). Unsupervised segmentation of anomalies in sequential data, images and volumetric data using multiscale fourier phase-only analysis. In LNCS, volume 7944, pages 44 – 53.
|
|
3 |
Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3).
|
|
4 |
Collins Jackson, A. and Lacey, S. (2020). The discrete Fourier transformation for seasonality and anomaly detection of an application to rare data. Data Technologies and Applications, 54(2):121 – 132.
|
|
5 |
Erkus¸, E. C. and Purutçuoglu, V. (2021). Outlier detection and quasi-periodicity optimization˘ algorithm: Frequency domain based outlier detection (FOD). European Journal of Operational Research, 291(2):560 – 574.
|
|
6 |
Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys, 46(4).
|
|
7 |
Han, J., Pei, J., and Tong, H. (2022). Data Mining: Concepts and Techniques. Morgan Kaufmann, Cambridge, MA, 4th edition edition.
|
|
8 |
Herrera, M., Proselkov, Y., Perez-Hernandez, M., and Parlikad, A. K. (2021). Mining GraphFourier Transform Time Series for Anomaly Detection of Internet Traffic at Core and Metro Networks. IEEE Access, 9:8997 – 9011.
|
|
9 |
Jiang, J.-R., Kao, J.-B., and Li, Y.-L. (2021). Semi-supervised time series anomaly detection based on statistics and deep learning. Applied Sciences (Switzerland), 11(15).
|
|
10 |
Killick, R. and Eckley, I. A. (2014). Changepoint: An R package for changepoint analysis. Journal of Statistical Software, 58(3):1 – 19.
|
|
11 |
Lima, J., Salles, R., Porto, F., Coutinho, R., Alpis, P., Escobar, L., Pacitti, E., and Ogasawara, E. (2022). Forward and Backward Inertial Anomaly Detector: A Novel Time Series Event Detection Method. In Proceedings of the IJCNN, volume 2022-July, pages 1–8.
|
|
12 |
Lindstrom, M. R., Jung, H., and Larocque, D. (2020). Functional kernel density estimation: Point and fourier approaches to time series anomaly detection. Entropy, 22(12):1 – 15.
|
|
13 |
Loyarte, M. G. and Menenti, M. (2008). Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina. International Journal of Remote Sensing, 29(4):1125 – 1152.
|
|
14 |
Lykou, R., Tsaklidis, G., and Papadimitriou, E. (2020). Change point analysis on the Corinth Gulf (Greece) seismicity. Physica A: Statistical Mechanics and its Applications, 541.
|
|
15 |
Olteanu, M., Rossi, F., and Yger, F. (2023). Meta-survey on outlier and anomaly detection. Neurocomputing, 555.
|
|
16 |
Oppenheim, A. V., Willsky, A. S., and Nawab, S. H. (1997). Signals & Systems. Prentice Hall.
|
|
17 |
Pang, G., Shen, C., Cao, L., and Van Den Hengel, A. (2021). Deep Learning for Anomaly Detection: A Review. ACM Computing Surveys, 54(2).
|
|
18 |
Ye, Y., He, Q., Zhang, P., Xiao, J., and Li, Z. (2023). Multivariate Time Series Anomaly Detection with Fourier Time Series Transformer. In 2023 IEEE 12th CloudNet 2023, pages 381 – 388.
|
|
19 |
Yu, Y., Zhu, Y., Li, S., and Wan, D. (2014). Time series outlier detection based on sliding window prediction. Mathematical Problems in Engineering, 2014.
|
|
20 |
Zhao, H., Lu, B., Yu, L., Zhao, S., Zeng, L., Zhang, Z., and You, P. (2018). A fourier series-based anomaly extraction approach to access network traffic in power telecommunications. In 2017 ICCSEC, pages 550 – 553.
|
|
21 |
Zhou, L., Guo, W., Cao, J., Zhang, X., and Wang, Y. (2023). Wavelet-SVDD: Anomaly Detection and Segmentation with Frequency Domain Attention. In LNAI, volume 14177, pages 230 – 243.
|
|