SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Ellen Silva(ellen.paixao@aluno.cefet-rj.br)
2 Helga Balbi(helga.balbi@cefet-rj.br)
3 Esther Pacitti( Esther.Pacitti@inria.fr)
4 Fabio Porto (fporto@lncc.br)
5 Joel Santos(joel.santos@cefet-rj.br)
6 Eduardo Ogasawara(eogasawara@ieee.org)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Bhattacharya, C., De, S., Mukhopadhyay, A., Sen, S., and Ray, A. (2020). Detection and classification of lean blow-out and thermoacoustic instability in turbulent combustors. Applied Thermal Engineering, 180.
2 Bürger, F. and Pauli, J. (2013). Unsupervised segmentation of anomalies in sequential data, images and volumetric data using multiscale fourier phase-only analysis. In LNCS, volume 7944, pages 44 – 53.
3 Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3).
4 Collins Jackson, A. and Lacey, S. (2020). The discrete Fourier transformation for seasonality and anomaly detection of an application to rare data. Data Technologies and Applications, 54(2):121 – 132.
5 Erkus¸, E. C. and Purutçuoglu, V. (2021). Outlier detection and quasi-periodicity optimization˘ algorithm: Frequency domain based outlier detection (FOD). European Journal of Operational Research, 291(2):560 – 574.
6 Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys, 46(4).
7 Han, J., Pei, J., and Tong, H. (2022). Data Mining: Concepts and Techniques. Morgan Kaufmann, Cambridge, MA, 4th edition edition.
8 Herrera, M., Proselkov, Y., Perez-Hernandez, M., and Parlikad, A. K. (2021). Mining GraphFourier Transform Time Series for Anomaly Detection of Internet Traffic at Core and Metro Networks. IEEE Access, 9:8997 – 9011.
9 Jiang, J.-R., Kao, J.-B., and Li, Y.-L. (2021). Semi-supervised time series anomaly detection based on statistics and deep learning. Applied Sciences (Switzerland), 11(15).
10 Killick, R. and Eckley, I. A. (2014). Changepoint: An R package for changepoint analysis. Journal of Statistical Software, 58(3):1 – 19.
11 Lima, J., Salles, R., Porto, F., Coutinho, R., Alpis, P., Escobar, L., Pacitti, E., and Ogasawara, E. (2022). Forward and Backward Inertial Anomaly Detector: A Novel Time Series Event Detection Method. In Proceedings of the IJCNN, volume 2022-July, pages 1–8.
12 Lindstrom, M. R., Jung, H., and Larocque, D. (2020). Functional kernel density estimation: Point and fourier approaches to time series anomaly detection. Entropy, 22(12):1 – 15.
13 Loyarte, M. G. and Menenti, M. (2008). Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina. International Journal of Remote Sensing, 29(4):1125 – 1152.
14 Lykou, R., Tsaklidis, G., and Papadimitriou, E. (2020). Change point analysis on the Corinth Gulf (Greece) seismicity. Physica A: Statistical Mechanics and its Applications, 541.
15 Olteanu, M., Rossi, F., and Yger, F. (2023). Meta-survey on outlier and anomaly detection. Neurocomputing, 555.
16 Oppenheim, A. V., Willsky, A. S., and Nawab, S. H. (1997). Signals & Systems. Prentice Hall.
17 Pang, G., Shen, C., Cao, L., and Van Den Hengel, A. (2021). Deep Learning for Anomaly Detection: A Review. ACM Computing Surveys, 54(2).
18 Ye, Y., He, Q., Zhang, P., Xiao, J., and Li, Z. (2023). Multivariate Time Series Anomaly Detection with Fourier Time Series Transformer. In 2023 IEEE 12th CloudNet 2023, pages 381 – 388.
19 Yu, Y., Zhu, Y., Li, S., and Wan, D. (2014). Time series outlier detection based on sliding window prediction. Mathematical Problems in Engineering, 2014.
20 Zhao, H., Lu, B., Yu, L., Zhao, S., Zeng, L., Zhang, Z., and You, P. (2018). A fourier series-based anomaly extraction approach to access network traffic in power telecommunications. In 2017 ICCSEC, pages 550 – 553.
21 Zhou, L., Guo, W., Cao, J., Zhang, X., and Wang, Y. (2023). Wavelet-SVDD: Anomaly Detection and Segmentation with Frequency Domain Attention. In LNAI, volume 14177, pages 230 – 243.