1 |
Albuquerque, H., Costa, R., Silvestre, G., Souza, E. P., Felix, N., Vitório, D., and Carvalho, A. (2022). Ulyssesner-br: A corpus of brazilian legislative documents for named entity recognition.
|
|
2 |
Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. Computer Speech & Language, 13(4):359–394.
|
|
3 |
Dal Pont, T. R., Sabo, I. C., Hubner, J. F., and Rover, A. J. (2020). Impact of text specificity and size on word embeddings performance: An empirical evaluation in brazilian legal domain. In Brazilian Conference on Intelligent Systems, pages 521–535. Springer.
|
|
4 |
de Araujo, P. H. L., de Campos, T. E., de Oliveira, R. R., Stauffer, M., Couto, S., and Bermejo, P. (2018). Lener-br: A dataset for named entity recognition in brazilian legal text. In International Conference on Computational Processing of the Portuguese Language, pages 313–323. Springer
|
|
5 |
de Oliveira, R. A. N. and Junior, M. C. (2017). Assessing the impact of stemming algorithms applied to judicial jurisprudence - an experimental analysis. In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1:ICEIS,, pages 99–105. INSTICC, SciTePress.
|
|
6 |
de Oliveira, R. S. and Nascimento, E. G. S. (2022). Brazilian court documents clustered by similarity together using natural language processing approaches with transformers.
|
|
7 |
Fonseca, E., Santos, L., Criscuolo, M., and Aluisio, S. (2016). Assin: Avaliacao de similaridade semantica e inferencia textual. In Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal, pages 13–15.
|
|
8 |
Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.
|
|
9 |
Luz de Araujo, P. H., de Campos, T. E., Ataides Braz, F., and Correia da Silva, N. (2020). VICTOR: a dataset for Brazilian legal documents classification. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 1449–1458, Marseille, France. European Language Resources Association.
|
|
10 |
Willian Sousa, A. and Fabro, M. (2019). Iudicium textum dataset uma base de textos jurídicos para nlp. In Dataset Show Case Proceedings of 34th Brazilian Symposium on Databases. SBC.
|
|