SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Daniel Silva Jr(danieljunior@id.uff.br)
2 Daniel de Oliveira(danielcmo@ic.uff.br)
3 Aline Paes(alinepaes@ic.uff.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Albuquerque, H., Costa, R., Silvestre, G., Souza, E. P., Felix, N., Vitório, D., and Carvalho, A. (2022). Ulyssesner-br: A corpus of brazilian legislative documents for named entity recognition.
2 Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. Computer Speech & Language, 13(4):359–394.
3 Dal Pont, T. R., Sabo, I. C., Hubner, J. F., and Rover, A. J. (2020). Impact of text specificity and size on word embeddings performance: An empirical evaluation in brazilian legal domain. In Brazilian Conference on Intelligent Systems, pages 521–535. Springer.
4 de Araujo, P. H. L., de Campos, T. E., de Oliveira, R. R., Stauffer, M., Couto, S., and Bermejo, P. (2018). Lener-br: A dataset for named entity recognition in brazilian legal text. In International Conference on Computational Processing of the Portuguese Language, pages 313–323. Springer
5 de Oliveira, R. A. N. and Junior, M. C. (2017). Assessing the impact of stemming algorithms applied to judicial jurisprudence - an experimental analysis. In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1:ICEIS,, pages 99–105. INSTICC, SciTePress.
6 de Oliveira, R. S. and Nascimento, E. G. S. (2022). Brazilian court documents clustered by similarity together using natural language processing approaches with transformers.
7 Fonseca, E., Santos, L., Criscuolo, M., and Aluisio, S. (2016). Assin: Avaliacao de similaridade semantica e inferencia textual. In Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal, pages 13–15.
8 Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.
9 Luz de Araujo, P. H., de Campos, T. E., Ataides Braz, F., and Correia da Silva, N. (2020). VICTOR: a dataset for Brazilian legal documents classification. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 1449–1458, Marseille, France. European Language Resources Association.
10 Willian Sousa, A. and Fabro, M. (2019). Iudicium textum dataset uma base de textos jurídicos para nlp. In Dataset Show Case Proceedings of 34th Brazilian Symposium on Databases. SBC.