1 |
Chen, J., Lin, H., Han, X., and Sun, L. (2024). Benchmarking
large language models in retrieval-augmented generation.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17754–17762.
|
|
2 |
Feng, Z., Feng, X., Zhao, D., Yang, M., and Qin, B.
(2024). Retrieval-generation synergy augmented large
language models. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 11661–11665. IEEE.
|
|
3 |
Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B.,
and Zhou, J. (2023a). Text-to-sql empowered by large
language models: A benchmark evaluation. arXiv
preprint arXiv:2308.15363.
|
|
4 |
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., and Wang, H. (2023b). Retrieval-augmented
generation for large language models: A survey. arXiv
preprint arXiv:2312.10997.
|
|
5 |
Giray, L. (2023). Prompt engineering with chatgpt: a guide
for academic writers. Annals of biomedical engineering,
51(12):2629–2633.
|
|
6 |
Jeong, C. (2023). A study on the implementation
of generative ai services using an enterprise databased
llm application architecture. arXiv preprint
arXiv:2309.01105.
|
|
7 |
Li, H., Su, Y., Cai, D., Wang, Y., and Liu, L. (2022). A
survey on retrieval-augmented text generation. arXiv
preprint arXiv:2202.01110.
|
|
8 |
Liu, A., Hu, X., Wen, L., and Yu, P. S. (2023). A comprehensive
evaluation of chatgpt’s zero-shot text-tosql
capability. arXiv preprint arXiv:2303.13547.
|
|
9 |
OpenAI (2023a). Chatgpt fine-tune description.
https://help.openai.com/en/articles/6783457-what-ischatgpt.
Accessed: 2024-03-01.
|
|
10 |
OpenAI (2023b). Chatgpt prompt engineering.
https://platform.openai.com/docs/guides/promptengineering.
Accessed: 2024-04-01.
|
|
11 |
Pinheiro, J., Victorio, W., Nascimento, E., Seabra, A.,
Izquierdo, Y., Garcıa, G., Coelho, G., Lemos, M.,
Leme, L. A. P. P., Furtado, A., et al. (2023). On the
construction of database interfaces based on large language
models. In Proceedings of the 19th International
Conference on Web Information Systems and
Technologies - Volume 1: WEBIST, pages 373–380.
INSTICC, SciTePress.
|
|
12 |
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30.
|
|
13 |
Wang, M., Wang, M., Xu, X., Yang, L., Cai, D., and Yin,
M. (2023). Unleashing chatgpt’s power: A case study
on optimizing information retrieval in flipped classrooms
via prompt engineering. IEEE Transactions on
Learning Technologies.
|
|
14 |
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert,
H., Elnashar, A., Spencer-Smith, J., and Schmidt,
D. C. (2023). A prompt pattern catalog to enhance
prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382.
|
|