1 |
Carvalho, P., Clua, E., Paes, A., Bentes, C., Lopes, B., and Drummond, L. M. (2020a). Using machine learning techniques to analyze the performance of concurrent kernel execution on gpus. Future Generation Computer Systems, 113(1):528–540.
|
|
2 |
Carvalho, P., Drummond, L. M., Bentes, C., Clua, E., Cataldo, E., and Marzulo, L. A.(2020b). Kernel concurrency opportunities based on gpu benchmarks characterization. Cluster Computing, 23(1):177–188.
|
|
3 |
Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., , and Skadron, K.(2009). Rodinia: A benchmark suite for heterogeneous computing.In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC), page 44:54.
|
|
4 |
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794. ACM.
|
|
5 |
Danalis, A., Marin, G., McCurdy, C., Meredith, J. S., Roth, P. C., Spafford, K., Tipparaju,V., and Vetter, J. S. (2010). The scalable heterogeneous computing (SHOC) benchmark suite. Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, page 63:74.
|
|
6 |
Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar):1157–1182.
|
|
7 |
Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (2013).Machine learning: Anartificial intelligence approach. Springer Science & Business Media.
|
|
8 |
Stratton, J. A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang, L.-W., Anssari, N., Liu,G. D., and mei W. Hwu, W. (2012). Parboil: A revised benchmark suite for scientific and commercial throughput computing.
|
|
9 |
Zien, A., Krämer, N., Sonnenburg, S., and Rätsch, G. (2009). The feature importance ranking measure. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 694–709. Springer
|
|