1 |
Ahmed, B., Haque, M. A., Iquebal, M. A., Jaiswal, S., Angadi, U., Kumar, D., and Rai, A.
(2023). Deepaprot: Deep learning based abiotic stress protein sequence classification
and identification tool in cereals. Frontiers in plant science, 13:1008756.
|
|
2 |
Balamurugan, R., Mohite, S., and Raja, S. (2023). Protein sequence classification using
bidirectional encoder representations from transformers (bert) approach. SN Computer
Science, 4(5):481.
|
|
3 |
Blum, M., Andreeva, A., Florentino, L., Chuguransky, S., Grego, T., Hobbs, E., Pinto, B.,
Orr, A., Paysan-Lafosse, T., Ponamareva, I., Salazar, G., Bordin, N., Bork, P., Bridge,
A., Colwell, L., Gough, J., Haft, D., Letunic, I., Llinares-Lopez, F., Marchler-Bauer, ´
A., Meng-Papaxanthos, L., Mi, H., Natale, D., Orengo, C., Pandurangan, A., Piovesan,
D., Rivoire, C., Sigrist, C. A., Thanki, N., Thibaud-Nissen, F., Thomas, P., Tosatto,
S. E., Wu, C., and Bateman, A. (2024). Interpro: the protein sequence classification
resource in 2025. Nucleic Acids Research, 53(D1):D444–D456.
|
|
4 |
Coutinho, M. G. F., Camara, G. B. M., Barbosa, R. d. M., and Fernandes, M. A. C. (2023). ˆ
Sars-cov-2 virus classification based on stacked sparse autoencoder. Computational
and Structural Biotechnology Journal, 21:284–298.
|
|
5 |
Camara, G. B. M., Coutinho, M. G. F., Silva, L. M. D. d., Gadelha, W. V. d. N., Torquato, ˆ
M. F., Barbosa, R. d. M., and Fernandes, M. A. C. (2022). Convolutional neural network applied to sars-cov-2 sequence classification. Sensors, 22(15):5730.
|
|
6 |
De Souza, J. G., Fernandes, M. A., and de Melo Barbosa, R. (2022). A novel deep neural
network technique for drug–target interaction. Pharmaceutics, 14(3):625.
|
|
7 |
Lilhore, U. K., Simiaya, S., Alhussein, M., Faujdar, N., Dalal, S., and Aurangzeb, K.
(2024). Optimizing protein sequence classification: integrating deep learning models
with bayesian optimization for enhanced biological analysis. BMC Medical Informatics and Decision Making, 24(1):236.
|
|
8 |
Liu, G. (2024). Hybrid random forest and support vector machine model for protein
sequence classification. In 2024 5th International Seminar on Artificial Intelligence,
Networking and Information Technology (AINIT), pages 1120–1124.
|
|
9 |
Luo, Y. and Cai, J. (2024). Deep learning in proteomics informatics: Applications, challenges, and future directions. arXiv preprint arXiv:2412.17349.
|
|
10 |
Mall, R., Kaushik, R., Martinez, Z. A., Thomson, M. W., and Castiglione, F. (2025).
Benchmarking protein language models for protein crystallization. Scientific Reports,
15(1):2381.
|
|
11 |
Murad, T., Ali, S., Chourasia, P., Mansoor, H., and Patterson, M. (2023). Circular arc
length-based kernel matrix for protein sequence classification. In 2023 IEEE International Conference on Big Data (BigData), pages 1429–1437.
|
|
12 |
Perveen, H. and Weeds, J. (2025). Protein sequence classification using natural language
processing techniques. Discover Artificial Intelligence, 5(1):1–25.
|
|
13 |
Suyunu, B., Dolu, O., and ¨ Ozg ¨ ur, A. (2025). evobpe: Evolutionary protein sequence ¨
tokenization. arXiv preprint arXiv:2503.08838.
|
|
14 |
Tasnim, F., Habiba, S. U., Mahmud, T., Nahar, L., Hossain, M. S., and Andersson, K.
(2024). Protein sequence classification through deep learning and encoding strategies.
Procedia Computer Science, 238:876–881.
|
|
15 |
Wang, Y., Zhang, Y., Zhan, X., He, Y., Yang, Y., Cheng, L., and Alghazzawi, D. (2024).
Machine learning for predicting protein properties: A comprehensive review. Neurocomputing, 597:128103.
|
|
16 |
Zhang, M., Wan, F., and Liu, T. (2023). Drugfinder: Druggable protein identification
model based on pre-trained models and evolutionary information. Algorithms, 16(6).
|
|