SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Giovanna Soares(giovanna.assuncao.705@ufrn.edu.br)
2 Hannah Marques(hannahisabele1516@gmail.com)
3 Matheus Dalmolin(matheusdalmolinrs@gmail.com)
4 Raquel Barbosa(rbarbosa@ugr.es)
5 Marcelo Fernandes(mfernandes@dca.ufrn.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Ahmed, B., Haque, M. A., Iquebal, M. A., Jaiswal, S., Angadi, U., Kumar, D., and Rai, A. (2023). Deepaprot: Deep learning based abiotic stress protein sequence classification and identification tool in cereals. Frontiers in plant science, 13:1008756.
2 Balamurugan, R., Mohite, S., and Raja, S. (2023). Protein sequence classification using bidirectional encoder representations from transformers (bert) approach. SN Computer Science, 4(5):481.
3 Blum, M., Andreeva, A., Florentino, L., Chuguransky, S., Grego, T., Hobbs, E., Pinto, B., Orr, A., Paysan-Lafosse, T., Ponamareva, I., Salazar, G., Bordin, N., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D., Letunic, I., Llinares-Lopez, F., Marchler-Bauer, ´ A., Meng-Papaxanthos, L., Mi, H., Natale, D., Orengo, C., Pandurangan, A., Piovesan, D., Rivoire, C., Sigrist, C. A., Thanki, N., Thibaud-Nissen, F., Thomas, P., Tosatto, S. E., Wu, C., and Bateman, A. (2024). Interpro: the protein sequence classification resource in 2025. Nucleic Acids Research, 53(D1):D444–D456.
4 Coutinho, M. G. F., Camara, G. B. M., Barbosa, R. d. M., and Fernandes, M. A. C. (2023). ˆ Sars-cov-2 virus classification based on stacked sparse autoencoder. Computational and Structural Biotechnology Journal, 21:284–298.
5 Camara, G. B. M., Coutinho, M. G. F., Silva, L. M. D. d., Gadelha, W. V. d. N., Torquato, ˆ M. F., Barbosa, R. d. M., and Fernandes, M. A. C. (2022). Convolutional neural network applied to sars-cov-2 sequence classification. Sensors, 22(15):5730.
6 De Souza, J. G., Fernandes, M. A., and de Melo Barbosa, R. (2022). A novel deep neural network technique for drug–target interaction. Pharmaceutics, 14(3):625.
7 Lilhore, U. K., Simiaya, S., Alhussein, M., Faujdar, N., Dalal, S., and Aurangzeb, K. (2024). Optimizing protein sequence classification: integrating deep learning models with bayesian optimization for enhanced biological analysis. BMC Medical Informatics and Decision Making, 24(1):236.
8 Liu, G. (2024). Hybrid random forest and support vector machine model for protein sequence classification. In 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), pages 1120–1124.
9 Luo, Y. and Cai, J. (2024). Deep learning in proteomics informatics: Applications, challenges, and future directions. arXiv preprint arXiv:2412.17349.
10 Mall, R., Kaushik, R., Martinez, Z. A., Thomson, M. W., and Castiglione, F. (2025). Benchmarking protein language models for protein crystallization. Scientific Reports, 15(1):2381.
11 Murad, T., Ali, S., Chourasia, P., Mansoor, H., and Patterson, M. (2023). Circular arc length-based kernel matrix for protein sequence classification. In 2023 IEEE International Conference on Big Data (BigData), pages 1429–1437.
12 Perveen, H. and Weeds, J. (2025). Protein sequence classification using natural language processing techniques. Discover Artificial Intelligence, 5(1):1–25.
13 Suyunu, B., Dolu, O., and ¨ Ozg ¨ ur, A. (2025). evobpe: Evolutionary protein sequence ¨ tokenization. arXiv preprint arXiv:2503.08838.
14 Tasnim, F., Habiba, S. U., Mahmud, T., Nahar, L., Hossain, M. S., and Andersson, K. (2024). Protein sequence classification through deep learning and encoding strategies. Procedia Computer Science, 238:876–881.
15 Wang, Y., Zhang, Y., Zhan, X., He, Y., Yang, Y., Cheng, L., and Alghazzawi, D. (2024). Machine learning for predicting protein properties: A comprehensive review. Neurocomputing, 597:128103.
16 Zhang, M., Wan, F., and Liu, T. (2023). Drugfinder: Druggable protein identification model based on pre-trained models and evolutionary information. Algorithms, 16(6).