1 |
Iandola, F. N. et al. (2016). Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size. arXiv preprint arXiv:1602.07360.
|
|
2 |
Kong, S.-H. et al. (2018). Automatic lpi radar waveform recognition using cnn. Ieee Access, 6:4207–4219.
|
|
3 |
Liu, Z. et al. (2024). A method for lpi radar signals recognition based on complex convolutional neural network. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 37(1):e3155.
|
|
4 |
Ma, N. and Wang, J. (2013). Dynamic threshold for spwvd parameter estimation based on otsu algorithm. Journal of Systems Engineering and Electronics, 24(6):919–924.
|
|
5 |
Milczarek, H. et al. (2023). Automatic classification of frequency-modulated radar waveforms under multipath conditions. IEEE Sensors Journal.
|
|
6 |
Niranjan, R., Rama Rao, C., and Singh, A. (2021). Fpga based identification of frequency and phase modulated signals by time domain digital techniques for elint systems. Defence Science Journal, 71(1).
|
|
7 |
Pace, P. E. (2009). Detecting and classifying low probability of intercept radar. Artech house.
|
|
8 |
Walenczykowska, M., Kawalec, A., and Krenc, K. (2023). An application of analytic wavelet transform and convolutional neural network for radar intrapulse modulation recognition. Sensors, 23(4):1986.
|
|
9 |
Wan, C., Si, W., and Deng, Z. (2023). Research on modulation recognition method of multi-component radar signals based on deep convolution neural network. IET Radar, Sonar & Navigation.
|
|
10 |
Willetts, B., Ritchie, M., and Griffiths, H. (2020). Optimal time-frequency distribution selection for lpi radar pulse classification. In 2020 IEEE Int Radar Conf (RADAR), pages 327–332. IEEE.
|
|
11 |
Choi, H.-I. and Williams, W. J. (1989). Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans on Acoustics, Speech, and Signal Processing, 37(6):862–871.
|
|
12 |
da Defesa, M. (2004). Política de ge de defesa. Portaria 333/MD. Art. 4.
|
|
13 |
Faceli, K., Lorena, A. C., Gama, J., Almeida, T. A. d., and Carvalho, A. C. P. d. L. F. d. (2021). Inteligência artificial: uma abordagem de aprendizado de máquina. LTC.
|
|
14 |
Huynh-The, T. et al. (2021). Accurate lpi radar waveform recognition with cwd-tfa for deep convolutional network. IEEE Wireless Com. Letters, 10(8):1638–1642.
|
|