1 |
Barlaug, N. and Gulla, J. A. Neural Networks for Entity Matching: A Survey. ACM Trans. Knowl. Discov. Data 15 (3): 52:1–52:37, Apr., 2021.
|
|
2 |
Batista, A. F., Diniz, C. S., Bonilha, E. A., Kawachi, I., and Chiavegatto Filho, A. D. Neonatal mortality prediction with routinely collected data: a machine learning approach. BMC pediatrics vol. 21, pp. 1–6, 2021.
|
|
3 |
Chakraborty, J., Majumder, S., and Menzies, T. Bias in machine learning software: why? how? what to do? In Proc. of the 29th ACM Joint Meeting on European Software Engineering Conference and Symp. on the Foundations of Software Engineering. ESEC/FSE 2021. New York, USA, pp. 429–440, 2021.
|
|
4 |
Chivardi, C., Zamudio Sosa, A., Cavalcanti, D. M., Ordoñez, J. A., Diaz, J. F., Zuluaga, D., Almeida, C., Serván-Mori, E., Hessel, P., Moncayo, A. L., et al. Understanding the social determinants of child mortality
in latin america over the last two decades: a machine learning approach. Scientific reports 13 (1): 20839, 2023.
|
|
5 |
Crawford, L. Impact of Ohio Senate Bill 265 on Infant Mortality Rate in Ohio. Ph.D. thesis, Walden Univ., 2025.
|
|
6 |
He, H. and Ma, Y. Imbalanced learning: foundations, algorithms, and applications, 2013.
|
|
7 |
Khushi, M., Shaukat, K., Alam, T. M., Hameed, I. A., Uddin, S., Luo, S., Yang, X., and Reyes, M. C. A Comparative Performance Analysis of Data Resampling Methods on Imbalance Medical Data. IEEE Access vol. 9,
pp. 109960–109975, 2021.
|
|
8 |
Kumar, P., Bhatnagar, R., Gaur, K., and Bhatnagar, A. Classification of imbalanced data: review of methods and applications. In IOP conf. series: materials science and engineering. Vol. 1099. IOP Pub., pp. 012077, 2021.
|
|
9 |
Maharana, K., Mondal, S., and Nemade, B. A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings 3 (1): 91–99, June, 2022.
|
|
10 |
Organization, W. H. et al. Infant mortality, 2020.
|
|
11 |
Pillay, T., Dawson, K., and Trenell, M. Infant mortality is rising in the uk—reducing modifiable risks can help reverse reverse the trend, 2025.
|
|
12 |
Silva, A., Rocha, E., and Endo, P. Evaluating how different balancing data techniques impact on prediction of premature birth - extended abstract – ctdgsi 2025. In Anais Estendidos do XXI Simpósio Brasileiro de Sistemas de Informação. SBC, Porto Alegre, RS, Brasil, pp. 111–114, 2025.
|
|
13 |
Trinh, N. T., de Visme, S., Cohen, J. F., Bruckner, T., Lelong, N., Adnot, P., Rozé, J.-C., Blondel, B., Goffinet, F., Rey, G., et al. Recent historic increase of infant mortality in france: A time-series analysis, 2001 to 2019. The Lancet Regional Health–Europe vol. 16, 2022
|
|
14 |
Wongvorachan, T., He, S., and Bulut, O. A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining. Information 14 (1): 54, Jan., 2023. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.
|
|