SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Ricardo Morsoleto(ricardo.morsoleto@alunos.ifsuldeminas.edu.br)
2 Vinícius Silva(vinicius.silva@ifsuldeminas.edu.br)
3 Juliano Caliari(juliano.caliari@ifsuldeminas.edu.br)
4 Simone Miranda(sisimaramiranda@gmail.com)
5 Hiran Ferreira(hiran.ferreira@ifsuldeminas.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Barlaug, N. and Gulla, J. A. Neural Networks for Entity Matching: A Survey. ACM Trans. Knowl. Discov. Data 15 (3): 52:1–52:37, Apr., 2021.
2 Batista, A. F., Diniz, C. S., Bonilha, E. A., Kawachi, I., and Chiavegatto Filho, A. D. Neonatal mortality prediction with routinely collected data: a machine learning approach. BMC pediatrics vol. 21, pp. 1–6, 2021.
3 Chakraborty, J., Majumder, S., and Menzies, T. Bias in machine learning software: why? how? what to do? In Proc. of the 29th ACM Joint Meeting on European Software Engineering Conference and Symp. on the Foundations of Software Engineering. ESEC/FSE 2021. New York, USA, pp. 429–440, 2021.
4 Chivardi, C., Zamudio Sosa, A., Cavalcanti, D. M., Ordoñez, J. A., Diaz, J. F., Zuluaga, D., Almeida, C., Serván-Mori, E., Hessel, P., Moncayo, A. L., et al. Understanding the social determinants of child mortality in latin america over the last two decades: a machine learning approach. Scientific reports 13 (1): 20839, 2023.
5 Crawford, L. Impact of Ohio Senate Bill 265 on Infant Mortality Rate in Ohio. Ph.D. thesis, Walden Univ., 2025.
6 He, H. and Ma, Y. Imbalanced learning: foundations, algorithms, and applications, 2013.
7 Khushi, M., Shaukat, K., Alam, T. M., Hameed, I. A., Uddin, S., Luo, S., Yang, X., and Reyes, M. C. A Comparative Performance Analysis of Data Resampling Methods on Imbalance Medical Data. IEEE Access vol. 9, pp. 109960–109975, 2021.
8 Kumar, P., Bhatnagar, R., Gaur, K., and Bhatnagar, A. Classification of imbalanced data: review of methods and applications. In IOP conf. series: materials science and engineering. Vol. 1099. IOP Pub., pp. 012077, 2021.
9 Maharana, K., Mondal, S., and Nemade, B. A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings 3 (1): 91–99, June, 2022.
10 Organization, W. H. et al. Infant mortality, 2020.
11 Pillay, T., Dawson, K., and Trenell, M. Infant mortality is rising in the uk—reducing modifiable risks can help reverse reverse the trend, 2025.
12 Silva, A., Rocha, E., and Endo, P. Evaluating how different balancing data techniques impact on prediction of premature birth - extended abstract – ctdgsi 2025. In Anais Estendidos do XXI Simpósio Brasileiro de Sistemas de Informação. SBC, Porto Alegre, RS, Brasil, pp. 111–114, 2025.
13 Trinh, N. T., de Visme, S., Cohen, J. F., Bruckner, T., Lelong, N., Adnot, P., Rozé, J.-C., Blondel, B., Goffinet, F., Rey, G., et al. Recent historic increase of infant mortality in france: A time-series analysis, 2001 to 2019. The Lancet Regional Health–Europe vol. 16, 2022
14 Wongvorachan, T., He, S., and Bulut, O. A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining. Information 14 (1): 54, Jan., 2023. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.