1 |
Aharonov, D., Ambainis, A., Kempe, J., and Vazirani, U. (2001). Quantum walks on graphs. InACM STOC, pages 50–59.
|
|
2 |
Aharonov, Y., Davidovich, L., and Zagury, N. (1993). Quantum random walks.Phys.Rev. A, 48(2):1687.
|
|
3 |
Andrade, M. G. (2020). Characterizing the Inherent Relationship Between Unitary Quan-tum Walks and Non-Homogeneous Random Walks on Finite Graphs. Master’s thesis,Federal University of Rio de Janeiro. Available athttps://www.cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/details/15/2953.
|
|
4 |
Andrade, M. G., Marquezino, F. L., and Figueiredo, D. R. (2021). Quantum walks can unitarily match random walks on finite graphs. arXiv pre-print 2103.06463.
|
|
5 |
Andrade, M. G., Marquezino, F. L., and Figueiredo, D. R. (2020). On the equivalence between quantum and random walks on finite graphs.Quantum Inf. Process., 19(11):1–20.
|
|
6 |
Childs, A. M. (2009).Universal computation by quantum walk.Phys. Rev. Lett.,102(18):180501.
|
|
7 |
Lubasch, M., Joo, J., Moinier, P., Kiffner, M., and Jaksch, D. (2020). Variational quantum algorithms for nonlinear problems.Phys. Rev. A, 101:010301.
|
|
8 |
Montero, M. (2017). Quantum and random walks as universal generators of probability distributions.Phys. Rev. A, 95(6):062326.
|
|
9 |
Portugal, R. (2013).Quantum walks and search algorithms. Springer.
|
|
10 |
Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. InIEEE FOCS, pages 124–134.
|
|