| 1 | Aharonov, D., Ambainis, A., Kempe, J., and Vazirani, U. (2001). Quantum walks on graphs. InACM STOC, pages 50–59. |  | 
																		
							| 2 | Aharonov, Y., Davidovich, L., and Zagury, N. (1993). Quantum random walks.Phys.Rev. A, 48(2):1687. |  | 
																		
							| 3 | Andrade, M. G. (2020). Characterizing the Inherent Relationship Between Unitary Quan-tum Walks and Non-Homogeneous Random Walks on Finite Graphs. Master’s thesis,Federal University of Rio de Janeiro. Available athttps://www.cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/details/15/2953. |  | 
																		
							| 4 | Andrade, M. G., Marquezino, F. L., and Figueiredo, D. R. (2021). Quantum walks can unitarily match random walks on finite graphs. arXiv pre-print 2103.06463. |  | 
																		
							| 5 | Andrade, M. G., Marquezino, F. L., and Figueiredo, D. R. (2020). On the equivalence between quantum and random walks on finite graphs.Quantum Inf. Process., 19(11):1–20. |  | 
																		
							| 6 | Childs, A. M. (2009).Universal computation by quantum walk.Phys. Rev. Lett.,102(18):180501. |  | 
																		
							| 7 | Lubasch, M., Joo, J., Moinier, P., Kiffner, M., and Jaksch, D. (2020). Variational quantum algorithms for nonlinear problems.Phys. Rev. A, 101:010301. |  | 
																		
							| 8 | Montero, M. (2017). Quantum and random walks as universal generators of probability distributions.Phys. Rev. A, 95(6):062326. |  | 
																		
							| 9 | Portugal, R. (2013).Quantum walks and search algorithms. Springer. |  | 
																		
							| 10 | Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. InIEEE FOCS, pages 124–134. |  |