SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Débora Pina(dbpina@cos.ufrj.br)
2 Liliane Neves(lneves@cos.ufrj.br)
3 Daniel de Oliveira(danielcmo@ic.uff.br)
4 Marta Mattoso(marta@cos.ufrj.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Almeida, R. F., da Silva, W. M. C., Castro, K., de Araújo, A. P. F., Walter, M. E. T., Lifschitz, S., and Holanda, M. (2019). Managing data provenance for bioinformatics workflows using aprovbio. Int. J. Comput. Biol. Drug Des., 12(2):153–170.
2 Fairweather, E., Wittner, R., Chapman, M., Holub, P., and Curcin, V. (2020). Non-repudiable provenance for clinical decision support systems. CoRR, abs/2006.11233.
3 Fekete, J., Freire, J., and Rhyne, T. (2020). Exploring reproducibility in visualization. IEEE Computer Graphics and Applications, 40(5):108–119.
4 Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Computing in Science & Engineering, 10(3):11–21.
5 Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, volume 1. MIT press Cambridge.
6 Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105.
7 Moreau, L. and Groth, P. (2013). Provenance: an introduction to prov. Synthesis Lectures on the Semantic Web: Theory and Technology, 3(4):1–129.
8 Orr, G. B. and Muller, K.-R. (2003). Neural networks: tricks of the trade. Springer.
9 Pimentel, J. F., Murta, L., Braganholo, V., and Freire, J. (2017). noworkflow: a tool for collecting, analyzing, and managing provenance from python scripts. VLDB, 10(12).
10 Pina, D., Kunstmann, L., de Oliveira, D., Valduriez, P., and Mattoso, M. (2021). Provenance supporting hyperparameter analysis in deep neural networks. In IPAW, pages 20–38.
11 Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017). Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561.
12 Russell, S. J. and Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th Edition). Pearson.
13 Silva, V., de Oliveira, D., Valduriez, P., and Mattoso, M. (2018). Dfanalyzer: runtime dataflow analysis of scientific applications using provenance. VLDB, 11:2082–2085.
14 Souza, R., Azevedo, L., Lourenço, V., Soares, E., Thiago, R., Brandão, R., Civitarese, D., Brazil, E. V., Moreno, M., Valduriez, P., Mattoso, M., Cerqueira, R., and Netto, M. A. S. (2019). Provenance data in the machine learning lifecycle in computational science and engineering. In WORKS, pages 1–10. IEEE.