1 |
Almeida, R. F., da Silva, W. M. C., Castro, K., de Araújo, A. P. F., Walter, M. E. T., Lifschitz, S., and Holanda, M. (2019). Managing data provenance for bioinformatics workflows using aprovbio. Int. J. Comput. Biol. Drug Des., 12(2):153–170.
|
|
2 |
Fairweather, E., Wittner, R., Chapman, M., Holub, P., and Curcin, V. (2020). Non-repudiable provenance for clinical decision support systems. CoRR, abs/2006.11233.
|
|
3 |
Fekete, J., Freire, J., and Rhyne, T. (2020). Exploring reproducibility in visualization. IEEE Computer Graphics and Applications, 40(5):108–119.
|
|
4 |
Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Computing in Science & Engineering, 10(3):11–21.
|
|
5 |
Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, volume 1. MIT press Cambridge.
|
|
6 |
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105.
|
|
7 |
Moreau, L. and Groth, P. (2013). Provenance: an introduction to prov. Synthesis Lectures on the Semantic Web: Theory and Technology, 3(4):1–129.
|
|
8 |
Orr, G. B. and Muller, K.-R. (2003). Neural networks: tricks of the trade. Springer.
|
|
9 |
Pimentel, J. F., Murta, L., Braganholo, V., and Freire, J. (2017). noworkflow: a tool for collecting, analyzing, and managing provenance from python scripts. VLDB, 10(12).
|
|
10 |
Pina, D., Kunstmann, L., de Oliveira, D., Valduriez, P., and Mattoso, M. (2021). Provenance supporting hyperparameter analysis in deep neural networks. In IPAW, pages 20–38.
|
|
11 |
Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017). Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561.
|
|
12 |
Russell, S. J. and Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th Edition). Pearson.
|
|
13 |
Silva, V., de Oliveira, D., Valduriez, P., and Mattoso, M. (2018). Dfanalyzer: runtime dataflow analysis of scientific applications using provenance. VLDB, 11:2082–2085.
|
|
14 |
Souza, R., Azevedo, L., Lourenço, V., Soares, E., Thiago, R., Brandão, R., Civitarese, D., Brazil, E. V., Moreno, M., Valduriez, P., Mattoso, M., Cerqueira, R., and Netto, M. A. S. (2019). Provenance data in the machine learning lifecycle in computational science and engineering. In WORKS, pages 1–10. IEEE.
|
|