1 |
Ahn, J., Hwang, J., Kim, D., Choi, H., Kang, S.: A survey on churn analysis in various business domains. IEEE Access 8, 220816–220839 (2020). https://doi.org/10.1109/ACCESS.2020.3042657
|
|
2 |
Aleksandrova, Y.: Application of machine learning for churn prediction based on transactional data (rfm analysis). In: 18 International Multidisciplinary Scientific Geoconference SGEM 2018: Conference Proceedings. vol. 18, pp. 125–132 (2018)
|
|
3 |
Amiri, H., Daume III, H.: Target-dependent churn classification in microblogs. Proceedings of the AAAI Conference on Artificial Intelligence 29(1) (Feb 2015). https://doi.org/10.1609/aaai.v29i1.9532
|
|
4 |
Amiri, H., Daume III, H.: Short text representation for detecting churn in microblogs. Proceedings of the AAAI Conference on Artificial Intelligence 30(1) (Mar 2016). https://doi.org/10.1609/aaai.v30i1.10333
|
|
5 |
Beckhauser, W.J., Fileto, R.: Churn prediction in enterprises with high customer turnover. In: International Conference on Information Integration and Web Intelligence. pp. 176–191. Springer (2023)
|
|
6 |
Berry, M.J., Linoff, G.S.: Data mining techniques: for marketing, sales, and customer relationship management. John Wiley & Sons (2004)
|
|
7 |
Cheng, C.H., Chen, Y.S.: Classifying the segmentation of customer value via rfm model and rs theory. Expert systems with applications 36(3), 4176–4184 (2009)
|
|
8 |
Gallo, A.: The value of keeping the right customers. Harvard Business Review (Nov 2014), https: //hbr.org/2014/10/the-value-of-keeping-the-right-customers
|
|
9 |
Gao, L., de Haan, E., Melero-Polo, I., Sese, F.J.: Winning your customers’ minds and hearts: Disentangling the effects of lock-in and affective customer experience on retention. Journal of the Academy of Marketing Science 51(2), 334–371 (2023)
|
|
10 |
Geiler, L., Affeldt, S., Nadif, M.: A survey on machine learning methods for churn prediction. International Journal of Data Science and Analytics 14(3), 217–242 (2022)
|
|
11 |
Gridach, M., Haddad, H., Mulki, H.: Churn identification in microblogs using convolutional neural net- works with structured logical knowledge (11 2017). https://doi.org/10.18653/v1/W17-4403
|
|
12 |
Hartmann, J., Heitmann, M., Siebert, C., Schamp, C.: More than a feeling: Accuracy and applica- tion of sentiment analysis. International Journal of Research in Marketing 40(1), 75–87 (2023). https://doi.org/https://doi.org/10.1016/j.ijresmar.2022.05.005
|
|
13 |
Hochstein, B., Voorhees, C.M., Pratt, A.B., Rangarajan, D., Nagel, D.M., Mehrotra, V.: Customer success management, customer health, and retention in b2b industries. International Journal of Research in Marketing 40(4), 912–932 (2023)
|
|
14 |
Ibitoye, A., Onifade, O.: Sequentially clustered social opinion for improved customer management in churn prediction (06 2022). https://doi.org/10.21203/rs.3.rs-1797516/v1
|
|
15 |
Jain, H., Khunteta, A., Srivastava, S.: Telecom churn prediction and used techniques, datasets and perfor- mance measures: a review. Telecommunication systems 76(4), 613–630 (2021)
|
|
16 |
Koroteev, M.V.: Bert: A review of applications in natural language processing and understanding. ArXiv abs/2103.11943 (2021), https://api.semanticscholar.org/CorpusID:232307525
|
|
17 |
Krugmann, J.O., Hartmann, J.: Sentiment analysis in the age of generative ai. Customer Needs and Solu- tions 11(1), 1–19 (2024)
|
|
18 |
Mena, G., Coussement, K., De Bock, K.W., De Caigny, A., Lessmann, S.: Exploiting time-varying rfm measures for customer churn prediction with deep neural networks. Annals of Operations Research pp. 1–23 (2023)
|
|
19 |
Mitrovic, S., Singh, G., Baesens, B., Lemahieu, W., de Weerdt, J.: Scalable rfm-enriched representation learning for churn prediction. In: 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA). pp. 79–88 (2017). https://doi.org/10.1109/DSAA.2017.42
|
|
20 |
Mustafa, N., Sook Ling, L., Abdul Razak, S.F.: Customer churn prediction for telecommunication industry: A malaysian case study [version 1; peer review: 2 approved]. F1000 research 10, 1274–1274 (2021)
|
|
21 |
Nagaraj, P., Muneeswaran, V., Dharanidharan, A., Aakash, M., Balananthanan, K., Rajkumar, C.: E- commerce customer churn prediction scheme based on customer behaviour using machine learning. In: Intl. Conf. on Computer Communication and Informatics (ICCCI). pp. 1–6. IEEE (2023)
|
|
22 |
Perisˇic ́, A., Pahor, M.: Clustering mixed-type player behavior data for churn prediction in mobile games. Central European journal of operations research 31(1), 165–190 (2023)
|
|
23 |
Perisˇic ́, A., Pahor, M.: Rfm-lir feature framework for churn prediction in the mobile games market. IEEE Transactions on Games 14(2), 126–137 (2022). https://doi.org/10.1109/TG.2021.3067114
|
|
24 |
Shobana, J., Gangadhar, C., Arora, R.K., Renjith, P., Bamini, J., devidas Chincholkar, Y.: E-commerce customer churn prevention using machine learning-based business intelligence strategy. Measurement: Sensors 27, 100728 (2023)
|
|
25 |
Sobreiro, P., Martinho, D.D.S., Alonso, J.G., Berrocal, J.: A slr on customer dropout prediction. IEEE access 10, 14529–14547 (2022)
|
|
26 |
Suh, Y.: Machine learning based customer churn prediction in home appliance rental business. Journal of big Data 10(1), 41 (2023)
|
|
27 |
Tran, H., Le, N., Nguyen, V.H.: Customer churn prediction in the banking sector using machine learning- based classification models. Interdisciplinary Journal of Information, Knowledge & Management 18 (2023)
|
|
28 |
Wenger, M.: Strategic Business Models in the Online Food Delivery Industry-Detailed Analysis of the- ” Order and Delivery” Business Model. Master’s thesis, Universidade NOVA de Lisboa (Portugal) (2021)
|
|
29 |
Zhong, J., Li, W.: Predicting customer churn in the telecommunication industry by analyzing phone call transcripts with convolutional neural networks. In: 3rd Intl. Conf. on Innova- tion in Artificial Intelligence. p. 55–59. ICIAI 2019, ACM, New York, NY, USA (2019). https://doi.org/10.1145/3319921.3319937
|
|