1 |
Blankenberg, D. et al. (2014). Dissemination of scientific software with galaxy toolshed.
Genome Biology, 15(2):403.
|
|
2 |
Blei, D. M. (2012). Probabilistic topic models. Commun. of the ACM, 55(4):77–84.
|
|
3 |
Costa, F. et al. (2012). Athena: text mining based discovery of scientific workflows in
disperse repositories. In RED 2010, Paris, France, pages 104–121. Springer.
|
|
4 |
de Oliveira, D., Liu, J., and Pacitti, E. (2019). Data-Intensive Workflow Management: For
Clouds and Data-Intensive and Scalable Computing Environments. Morgan & Claypool.
|
|
5 |
Dias, L. G. et al. (2024). Maestro: a lightweight ontology-based framework for composing
and analyzing script-based scientific experiments. Knowledge and Information Systems.
|
|
6 |
Goble, C. A. et al. (2010). myexperiment: a repository and social network for the sharing of
bioinformatics workflows. Nucleic Acids Res., 38:677–682.
|
|
7 |
Grootendorst, M. (2022). Bertopic: Neural topic modeling with a class-based tf-idf proce-
dure. CoRR, abs/2203.05794.
|
|
8 |
Gu, Y., Cao, J., Qian, S., and Guan, W. (2023). Sworts: a scientific workflow retrieval ap-
proach by learning textual and structural semantics. IEEE Trans. on Services Computing.
|
|
9 |
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese
bert-networks. pages 3980–3990.
|
|
10 |
Silva, V. et al. (2011). Similarity-based workflow clustering. Journal of Computational
Interdisciplinary Sciences, 2(1):23–35.
|
|
11 |
Souza, F., Nogueira, R., and Lotufo, R. (2020). Bertimbau: Pretrained bert models for bra-
zilian portuguese. In Intelligent Systems, pages 403–417, Cham. Springer International.
|
|
12 |
Starlinger, J. et al. (2016). Effective and efficient similarity search in scientific workflow
repositories. Future Generation Computer Systems, 56:584–594.
|
|
13 |
Thirunavukarasu, A. J., Ting, D. S. J., Elangovan, K., Gutierrez, L., Tan, T. F., and Ting, D.
S. W. (2023). Large language models in medicine. Nature medicine, 29(8):1930–1940.
|
|
14 |
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.
|
|
15 |
Zhou, Z., Cheng, Z., Zhang, L.-J., Gaaloul, W., and Ning, K. (2018). Scientific workflow
clustering and recommendation leveraging layer hierarchical analysis. IEEE Transactions
on Services Computing, 11(1):169–183.
|
|