SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Ruan de Melo(rtm@ic.ufal.br)
2 Felipe Vasconcelos(ffv@ic.ufal.br)
3 Rafael Silva(rlls@ic.ufal.br)
4 Pedro Santos(pvafs@ic.ufal.br)
5 Vinicius Ramos(vtpr@ic.ufal.br)
6 Fabio Coutinho(fabio@ic.ufal.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Alablani, I. and Alenazi, M. (2020). EDTD-SC: An IoT sensor deployment strategy for smart cities. sensors, 20(24):7191
2 Arbex, R. O. and da Cunha, C. B. (2016). Avaliação das mudanças nas velocidades das linhas de ônibus da cidade de São Paulo após a implantação de faixas exclusivas através da analise de dados de GPS. Transportes, 24(4):21–31
3 Braz, T., Maciel, M., Mestre, D. G., Andrade, N., Pires, C. E., Queiroz, A. R., and Santos, V. B. (2018). Estimating inefficiency in bus trip choices from a user perspective with schedule, positioning, and ticketing data. IEEE Transactions on Intelligent Transportation Systems, 19(11):3630–3641
4 Cruz Junior, J. I. S. d. (2020). Metodos de análise de dados no transporte público urbano. Monografia (Trabalho de Conclusao de Curso) -Ciência da Computação, Universidade Federal de Campina Grande, Campina Grande, 2020
5 CSC (2022). Ranking connected smart cities 2022. Disponível em: https:// ranking.connectedsmartcities.com.br/. [Acessado 20-Jun-2023]
6 da Cruz, S. M. S., Andrade, L. S., and Sampaio, J. O. (2016). Explorando dados abertos governamentais sobre a mobilidade urbana na cidade do rio de janeiro. In Anais do XLIII Seminario Integrado de Software e Hardware ´ , pages 1645–1655. SBC.
7 de Transporte Publico, A. N. (2018). Sistema de informações da mobilidade urbana da associação nacional de transportes público-simob/antp
8 Jose, R. and Mitra, S. (2018). Identifying and classifying highway bottlenecks based on spatial and temporal variation of speed. Journal of Transportation Engineering, PartA: Systems, 144(12):04018075.
9 Larsen, G. H., Yoshioka, L. R., and Marte, C. L. (2020). Bus travel times prediction based on real-time traffic data forecast using artificial neural networks. In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pages 1–6.
10 Queiroz, A. R. M., Santos, V. B., Nascimento, D. C., and Pires, C. E. S. (2019). Conformity analysis of GTFS routes and bus trajectories. In Anais do XXXIV Simposio Brasileiro de Banco de Dados, pages 199–204. SBC
11 Statista (2016). IoT devices installed base worldwide 2015-2025 — Statista — statista.com. https://www.statista.com/statistics/471264/ iot-number-of-connected-devices-worldwide/. [Acessado 02-Jan2023]
12 TAO, W. (2013). Interdisciplinary urban GIS for smart cities: advancements and opportunities. Geo-spatial Information Science, 16(1):25–34